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Cahn-Hilliard theory for unstable granular fluids

T. P .C. van Noije and M. H. Ernst
Instituut voor Theoretische Fysica, Universiteit Utrecht, Postbus 80006, 3508 TA Utrecht, The Netherlands

~Received 1 July 1999!

A Cahn-Hilliard-type theory for hydrodynamic fluctuations is proposed that gives a quantitative description
of the slowly evolving spatial correlations and structures in density and flow fields in the early stages of
evolution of freely cooling granular fluids. Two mechanisms for pattern selection and structure formation are
identified: unstable modes leading to density clustering~mechanismlike spinodal decomposition, or ‘‘uplift-
ing’’ in structural geology!, and selective noise reduction~mechanismlike peneplanation in structural geology!
leading to vortex patterns. As time increases, the structure factor for the density field develops a maximum,
which shifts to smaller wave numbers. This corresponds to an approximately diffusively growing length scale
for density clusters. Analytic expressions are derived for spatial correlation functions and structure factors that
agree well with molecular dynamics simulations of a fluid of inelastic hard disks.

PACS number~s!: 45.70.Qj, 47.20.2k, 05.40.2a
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I. INTRODUCTION

Recently we have proposed a mesoscopic theory, ba
on fluctuating hydrodynamics with unstable modes~Cahn-
Hilliard-type theory! in order to calculate the structure fa
tors and spatial correlations in driven and in freely cooli
granular fluids. This theory permits aquantitativecompari-
son with molecular dynamics~MD! simulations on fluids of
inelastic hard spheres, over rather long-time intervals. P
liminary accounts of the results were published in Refs.@1,2#
and documented in unpublished reports@3,4#. The basic goal
of this paper is to show how the theory of fluctuating hyd
dynamics or Langevin fluids@5# can be used in the field o
dissipative systems, such as granular fluids, to give deta
theoretical predictions about the form of structure functio
about the nature of long- and short-range correlations, an
identify in granular fluids two different mechanisms for pa
tern formation: for density clusters an analog of spino
decomposition@5# and for vortices an analog of peneplan
tion as occurring in structural geology@6#. Fluctuating hy-
drodynamics is one of the few available methods in stati
cal mechanics to calculate spatial correlations, and i
totally complementary to Boltzmann- or Enskog-type kine
equations, which are based on the fundamental assump
of molecular chaos, i.e., on the absence of spatial corr
tions.

In fact, we have already applied the method to a rando
driven or heated inelastic hard sphere~IHS! fluid @7#. In that
system the spatial correlations are very long ranged,;r 22d,
and are created by external noise that violates momen
conservation@8#. The same mechanism is creating the lon
ranged;r 22d correlations between the height correlations
the Edwards-Wilkinson model for surface growth@9#. In the
present model of the freely evolving IHS fluid the spat
correlations are much shorter ranged. For instance, in
incompressible limitthey are proportional to;r 2d @1#. So,
the external driving drastically changes the nature of the s
tial correlations.

The inelasticity of the collisions between grains mak
driven and undriven granular fluids behave very differen
from atomic or molecular fluids. A dramatic difference wi
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elastic fluids is that granular fluids lose kinetic ener
through inelastic collisions and cool if energy is not suppli
externally. In a thermodynamic sense, granular fluids sho
be considered as ‘‘open’’ systems with an energy sink, c
ated by the inelastic collisions. This collisional dissipati
mechanism introduces several new time and length sca
which are often related to instabilities. In this paper we w
focus on spatial correlation functions and structure facto
and on the underlying instabilities in freely evolving u
driven granular fluids.

These instabilities have been studied by several auth
using macroscopic or kinetic equations@10–18#. Goldhirsch
and Zanetti@10# were the first to perform molecular dynam
ics ~MD! simulations of an undriven two-dimensional~2D!
system of smooth inelastic hard disks and observed the s
taneous formation of density clusters. The system is unst
against spatial density fluctuations, so inhomogeneities in
density field ~clusters! slowly grow to macroscopic size
However, before this happens, the granular fluid, prepare
a spatially homogeneous state, remains in a spatiallyhomo-
geneous cooling state~HCS! with a slowly decreasing tem
perature. Gradually spatial inhomogeneities appear in
flow field ~vortex patterns!, and only much later density clus
ters are being observed. In Fig. 1 we show typical snaps
of the momentum field and the density field, as obtained

FIG. 1. Left: Velocity field aftert580 collisions per particle.
The density is then still nearly homogeneous. Right: Density field
t5160. System of 50 000 inelastic hard disks at a packing frac
f5

1
4 pns250.4 anda50.9.
1765 ©2000 The American Physical Society
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MD simulations of a system of inelastic hard disks@1#. The
flow field develops a large vorticity component and evolv
into a ‘‘dense fluid of closely packed vortex structures
which is still homogeneous on scales large compared to
average vortex diameterLv , provided the system is suffi
ciently large. More detailed information from MD simula
tions on the late stages of evolution in clustering of granu
fluids has recently been given in Ref.@18#.

In order to understand and quantify the patterns of Fig
we study the time-dependent spatial correlation functions
the corresponding fluctuations, using Landau and Lifshit
theory of fluctuating hydrodynamics@19#, adapted to dissi-
pative hard sphere fluids, i.e., adapted to the presenc
unstable modes. We present a theory that describes
buildup of spatial correlations in the density and flow field
the initial regime, where the inhomogeneities are gover
by linear hydrodynamics, i.e., linearized around the homo
neous cooling state~HCS!. To explain the theory we com
pare a freely evolving granular fluid with spinodal decomp
sition @5#, where the observed phenomena aresimilar in
several respects.

The observed instability and the concomitant pattern f
mation are explained by the Cahn-Hilliard~CH! theory @5#.
Similar theories have also been used for two-dimensio
turbulence~see Frisch@20# and references therein!, where the
behavior of the fluctuations in the flow field of incompres
ible fluids has been described in terms of negative eddy
cosities. Vorticity modes with negative effective viscositi
have also been used by Rothman to study vortex forma
in lattice gas cellular automata@21#.

The instability of undriven granular fluids alsodiffers in
many details from spinodal decomposition. The former i
slow process, the latter afast process. Consequently, th
Cahn-Hilliard theory in spinodal decomposition only d
scribes the onset length and time scales of phase separa
As the formation of vortices and clusters in undriven gran
lar fluids is a rather slow process, the present theory is
pected to give a good description up to times which
rather large~see Figs. 1 and 2!, provided the inelasticity and
the density are not too large.

The most important function to describe the cluster
instability are structure factorsS(k,t) in density and flow
field. Goldhirschet al. @11# have initiated the study of thes
structure factors, and related in a qualitative way the str
ture at smallk to the most unstable shear modes. They p
sented a nonlinear analysis to explain the enslaving of d
sity fluctuations by the vorticity field. This analysis revea
that the length scale associated with the late stages of
linear clustering is of the orderj'; l 0 /Ag0, wherel 0 is the
mean free path. Breyet al. have also studied the nonlinea
response of the density field to an initially excitedk mode in
the transverse flow field@22#.

A first step in the theoretical understanding ofSnn(k,t)
for density fluctuations has been given by Deltour and Ba
@15#. These authors have shown how thegrowth rateof S in
the linear regime is determined by the most unstable lo
wavelength part of the heat mode, in which the dens
couples to longitudinal velocity perturbations.

In two preliminary publications@1,2# we have only con-
sidered long-range correlations in the flow field to illustra
the results of fluctuating hydrodynamics. This theory yie
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predictions, including long-range tails ;r 2d in
d-dimensional fluids in the incompressible limit, that fo
nearly elastic particles (a*0.9) agree well with two-
dimensional MD simulations up to large distances. As
transverse velocity fluctuations of an incompressible fluid
not couple to the density fluctuations in a linear theory, t
theory gives no information on the structure factorSnn(k,t)
for density fluctuations.

The plan of the paper is as follows. In Sec. II we brie
discuss the hydrodynamic equations, the decay of the t
energy, and the properties of unstable shear and heat m
~with supporting technicalities in Appendix A!. In Sec. III
we construct the theory of fluctuating hydrodynamics
granular fluids, and present the general method on how
calculate structure factors and spatial correlations~with tech-
nicalities about Fourier and Bessel transformation in App
dix B!. Section IV focuses on the flow field, and identifie
the formation of vortex patterns, as peneplanation, while S
V deals with analogous properties for the density field, a
identifies the density clustering as an analog of ‘‘spino
decomposition’’ or ‘‘uplifting’’ to stay in a geological termi-
nology. Both sections derive simple analytic approximatio
for structure factors and correlations valid for long times. W
end with some conclusions in Sec. VI.

II. HYDRODYNAMICS

The macroscopic hydrodynamic equations for inelas
hard sphere~IHS! fluids are necessary to set the stage
describing fluctuations by Langevin-type equations. We
sume that IHS hydrodynamics for weakly inelastic syste
can be described by the standard hydrodynamic conserva
equations supplemented by a sink termG in the temperature
balance equation@23#,

FIG. 2. Kinetic energy per particleE versus number of colli-
sions per particlet for f50.4 anda50.9. Initially E is equal to the
temperatureT0 and follows Haff’s homogeneous cooling law~2!.
The arrow indicates a crossover timetc.67 from the homogeneou
cooling state to the nonlinear clustering regime. Then spatial in
mogeneities become important and slow down the energy de
The dashed line represents Haff’s law~2! and the dashed-dotted lin
the result of Ref.@17# for the long-time energy decay.
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] tn1“•~nu!50,

] tu1u•“u52
1

r
“•P, ~1!

] tT1u•“T52
2

dn
~“•J1P:“u!2G.

Moreover,r5mn is the mass density,u the flow velocity,
and 1

2 dnT the kinetic energy density in the local rest fram
of the IHS fluid andd the number of dimensions. The pre
sure tensorPab5pdab1dPab contains the local pressurep
and the dissipative momentum fluxdPab , which is propor-
tional to ¹aub and contains the kinematic and longitudin
viscositiesn and n l . The constitutive relation for the hea
flux, J52k“T, defines the heat conductivityk. The quan-
tity G is the average rate of energy loss through collisio
dissipation, which distinguishes Eqs.~1! from those of an
elastic fluid. The above equations can be justified to low
order in the inelasticity@24,25#, and will be used forweakly
inelasticsystems, where thermodynamic and transport pr
erties are assumed to be given by those of elastic hard sp
fluids ~see Appendix A!.

The energy balance equation for theheatedfluid in Ref.
@7#, as opposed to the freely evolving fluid discussed he
contains apart from the energy sink,2G, also an energy
source term. It is, however,not this inconspicuous mean en
ergy source in the macroscopic energy balance that is
sponsible for the large difference in spatial correlations
tween driven and undriven granular fluids, but the no
characteristics of the energy source.

Kinetic theory provides an exact expression for the co
sional dissipation rateG. It can be derived from the micro
scopic energy loss per collision. An explicit derivation c
be found in Refs.@26,27#. For the present purpose, howeve
a phenomenological derivation suffices, which proceeds
follows. On average, a particle loses per collision an amo
;g0T of its kinetic energy, and per unit time an amou
;g0vT, whereg0[(12a2)/2d is the degree of inelasticity
It is determined by the coefficienta of normal restitution,
which defines the inelastic hard sphere collisions@23#. Here
v is the average collision frequency@28#, given by Enskog’s
theory for dense hard sphere fluids@28#, and quoted in Ap-
pendix A. It is proportional toAT. This argument gives
~apart from a numerical factor! G52g0vT.

For an understanding of what follows two properties
undriven granular fluids are important:~i! the existence of a
homogeneous cooling state~HCS! and~ii ! its linear instabil-
ity against spatial fluctuations. The hydrodynamic equati
for an IHS fluid, initialized in a homogeneous state w
temperatureT0, admit a HCS solution with a homogeneo
densityn, a vanishing flow field, and a homogeneous te
peratureT(t), determined by] tT52G. To solve this equa-
tion it is convenient to change to a new time variable, d
fined asdt5v„T(t)…dt, yielding T(t)5T0 exp(22g0t). To
find the relation between the ‘‘internal’’ timet, which mea-
sures the average number of collisions suffered per par
within a time t, and the ‘‘external’’ timet, we integrate the
relation for dt using v;AT, with the result g0t5 ln@1
1g0t/t0#. In the elastic limit (g0→0), it is proportional to the
l
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external time,t5t/t0, measured in units of the mean fre
time t051/v(T0) at the initial temperature. The initial slop
of t(t) corresponds to the collision frequencyv(T0) in the
equilibrium state att50. A combination of these result
yields the slow decay of the temperature,

T~ t !5T0 exp~22g0t!5T0 /~11g0t/t0!2, ~2!

as first derived by Haff@23#. The relation introduces a new
intermediate ~mesoscopic! time scale, the homogeneou
cooling timete[t0 /g0.

For small inelasticity and a wide range of densities t
validity of Haff’s law and the existence of the HCS has be
verified by MD simulations@10–15,18#. The relation for the
temperature or energy decay remains valid until a crosso
time tc ~defined in Fig. 2! to a diffusive regime, where the
system remains spatially homogeneous, but where velo
fluctuations drive the system away from the HCS, and
decay of the total energy slows down tot2d/2 @17#. For still
larger times and/or larger inelasticities different forms of
gebraic energy decay, likeE;t2d/2 @29# andE;t22d/[d12]

@30# have been proposed. The HCS solution becomes
early unstable as soon as the lengthL of the system exceed
some dynamic correlation length; l 0 /Ag0 @10–15#, where
l 0 is the ~time-independent! mean free path. It is given by
l 05v0 /v, wherev0(t)5A2T(t)/m is the thermal velocity.

In general the HCS is highly nontrivial, as it exhibits co
relations between the velocities and positions of differ
particles. In the ‘‘lowest order’’ description~for more refined
approximations see@26,27,31,32#! the HCS corresponds to
an equilibrium state, which is cooling adiabatically, i.e., wi
a time-dependent temperature~2!. Here velocity correlations
between different particles are absent, and position corr
tions are taken only into account through the pair correlat
function at contact.

In the present paper we are interested in the buildup
correlations between spatial fluctuations in a system tha
prepared in a homogeneous state at an initial temperatureT0.
It reaches the HCS within a few mean free timest0. There-
fore, we can linearize Eqs.~1! around the homogeneous de
sity n and temperatureT(t)5T0 /@11g0t/t0#2, and the van-
ishing flow field of the slowly evolving HCS. The resultin
set of linearized hydrodynamic equations, given in Eq.~A1!
of Appendix A, contains the Enskog hard sphere transp
coefficients,n, n l , andk, which are proportional toAT(t),
and depend therefore explicitly on time. It is again conv
nient to make the transformation dt5v d t, and introduce
the rescaled variables dñ(r ,t)5dn(r ,t)/n, ũ(r ,t)
5u(r ,t)/v0(t), and dT̃(r ,t)5dT(r ,t)/T(t). In these vari-
ables the equations of change for the macroscopic Fou
modes dñ(k,t), ũ(k,t), and dT̃(k,t), defined through
dã(k,t)5*dr exp(2ik•r )dã(r ,t), become ordinary differ-
ential equations withtime-independentcoefficients. In matrix
representation we write the above equations as

]

]t
dã~k,t!5M ~k!dã~k,t!, ~3!

where components ofã and M are labeled with$n,T,l ,'%,
and are explicitly given in Appendix A. The subscript' in
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1768 PRE 61T. P. C. van NOIJE AND M. H. ERNST
the equation forũ' refers to any of thed21 directions per-
pendicular tok, and the subscriptl denotes the longitudina
direction alongk. The validity of the hydrodynamic Eqs.~3!
is restricted to wave numbersk!2p/ l 0 to guaranteesepara-
tion of kinetic and hydrodynamic scales, and tok!2p/s,
wheres is the diameter of a disk or sphere, to guarantee
the Euler equations involve only local hydrodynamics. A
ready at moderate packing fractions of about 20% the m
free path for hard disks is less than one diameter, and
system starts to show nonlocal effects in the thermodynam
and transport properties for wavelengthsl, satisfyingl 0,l
,s.

Necessary ingredients in our subsequent analysis are
eigenvalues or dispersion relationszl(k) and corresponding
eigenvectors ofM , which are given in Appendix A. Disper
sion relationszl(k) for the IHS fluid have been calculated
for instance, in Ref.@15#. Typical results of our calculation
are shown in Fig. 3. The most striking feature is that th
are two eigenvalues,z' andzH , that arepositivefor k below
the stability thresholdsk'

* andkH* , i.e., two linearly unstable
modes with exponential growth rates. In thedissipativerange
@12# (kl0!g0) all eigenvalues are real; propagating mod
are absent. Aroundkl0;O(g0), two eigenvalues becom
complex conjugates and the corresponding~sound! modes
become propagating, with a~rescaled! propagation speedcs ,
which equals the adiabatic sound speed in elastic hard sp
fluid, to lowest order ing0. In the normal orelastic range
(kl0}Ag0), heat conduction, which isO(k2l 0

2), becomes
dominant wheng0 is assumed to be sufficiently small so th
g0!Ag0. In the latter range, the dispersion relations a
eigenmodes resemble those of an elastic fluid.

The most simple modes are the (d21)-fold degenerate
transverse velocity or shear modes, which are decou
from the remaining modes, and given byũ'(k,t)
5ũ'(k,0)exp@z'(k)t#, where z'(k)5g0(12k2j'

2 ). We
point out for later reference that all correlation lengthsja
used in this paper are defined in Eqs.~A3! and ~A4! of Ap-

FIG. 3. Growth rateszl /g0 for shear (l5'), heat (l5H), and
sound (l56) modes~nonpropagating forks!g0) versusks for
inelastic hard disks witha50.9 at a packing fractionf50.4(l 0

.0.34s). The shear and heat mode are unstable fork,k'
* and k

,kH* , respectively.
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pendix A. The shear mode isunstablefor k,k'
* 51/j' .

There is another unstable mode, referred to as ‘‘h
mode,’’ that is essential for explaining the formation of vo
tices and density clusters. The corresponding eigenva
zH(k), the root of a cubic equation, is shown in Fig. 3. It
unstable forzH.0, i.e., fork,kH* , with kH* calculated in Eq.
~A7!. It has simple limiting behavior,

zH~k!.g0~12k2j i
2! ~kl0!g0!

.g0~z02k2jH
2 ! ~kl0}Ag0!, ~4!

as derived later in Eqs.~A7! and~A10!, and shown in Fig. 3,
respectively, as a dashed and a dotted line. In the dissipa
range the eigenmode is a purely longitudinal velocity flu
tuation. In the elastic range aroundkH* (k}Ag0) the eigen-
mode is to dominant order ing0 the heat mode of an elasti
hard sphere fluid. Furthermore, we point out thatj' andjH

diverges as 1/Ag0 for small g0, while j i;1/g0. As a conse-
quence the correlation lengthsj' andjH are well separated
from j i for small inelasticity, as shown in Fig. 4. The soun
modes will not be needed.

We also observe that the instability of the shear and h
modes is a long-wavelength instability. As a conseque
effects of the boundaries are important for finite systems,
the various instabilities are suppressed in small syste
When using periodic boundary conditions, the instabilit
are suppressed ifkmin52p/L is larger thank'

* or kH* . When
decreasing the system lengthL5V1/d at fixed inelasticity,
first the heat mode will becomestable (kH* ,kmin,k'

* ). In
this range the density~coupled to the heat mode! is linearly
stable, and density inhomogeneities can only be created v
nonlinear coupling to the unstable shear mode@10,22#. De-
creasing the system size even further (k'

* ,kmin) will stabi-
lize the shear mode and thus the HCS itself. In Sec. III
present a mesoscopic theory to describe the dynamics o
long-wavelength fluctuations in the system.

FIG. 4. Ratioj i /j' versus packing fractionf of inelastic disks,
with definitions ofj ’s in Eqs.~A3! and ~A4!.
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III. MESOSCOPIC HYDRODYNAMICS

A. Langevin equations

In this section we construct the general theory of fluc
ating hydrodynamics for granular fluids, and point out t
differences between the applications of this theory to fre
evolving and to randomly driven systems. The quantities
be calculated are the equal-time spatial correlation functi
of the fluctuating hydrodynamic fieldsda(r ,t)5a(r ,t)
2^a&, where a,b5$n,T,ua% with a5x,y, . . . denoting
Cartesian components,

Gab~r ,t !5V21E dr 8^da~r1r 8,t !db~r 8,t !&. ~5!

The structure factors are the corresponding Fourier tra
forms,

Sab~k,t !5E dr exp~2 ik•r !Gab~r ,t !

5V21^da~k,t !db~2k,t !&, ~6!

where da(k,t) is the Fourier transform ofda(r ,t), and V
5Ld is the volume of the system. We study the spatial flu
tuationsda(r ,t) of the hydrodynamic fields around a refe
ence state, which leads to a Cahn-Hilliard-type theory@5# for
the structure factors. The dynamics of these fluctuations
be described by the fluctuating hydrodynamic equations@19#,
obtained from the macroscopic hydrodynamic equations~3!
by adding noise sources to the momentum and energy
ance equations. The noise sources are denoted by“•P̂ and
“• Ĵ, respectively, which conserve momentum and ener
The currentsP̂ and Ĵ are considered as Gaussian wh
noise, local in space, and their correlations are determine
some appropriately formulated fluctuation-dissipation th
rem for the reference state.

In elastic fluids the reference state would be the ther
equilibrium state. In driven systems it would be a noneq
librium steady state~NESS!. In the present case the referen
state is the slowly evolving homogeneous cooling state.
same reference state has been used by Goldhirsch and o
the authors@3,32# to derive Green-Kubo formulas for trans
port coefficients in the undriven IHS fluid. In the lowe
approximation@27# it may be considered as an adiabatica
changing equilibrium state with a constant density, a van
ing flow field, and a time-dependent temperature, descri
by Haff’s law ~2!. The basic extension required for applic
tion to IHS fluids is the assumption that the fluctuatio
dissipation theorem also applies to the HCS with an adiab
cally changing temperatureT(t). This assumption relates th
noise strengths to the transport coefficients through@19#

^P̂ab~r ,t !P̂gd~r 8,t8!&52rT@n~dagdbd1daddbg!

1~n l22n!dabdgd#d~r2r 8!d

3~ t2t8!],
~7!

^ Ĵa~r ,t !Ĵb~r 8,t8!&52kT2dabd~r2r 8!d~ t2t8!,
-
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where the total coefficient in front ofn is a traceless isotropic
tensor of rank 4. For dimensional reasons, the transport
efficients in systems with hard sphere type interactions,
IHS, are proportional toAT(t).

In the present theory for nearly elastic fluids we linear
the nonlinear Langevin equations, obtained from Eq.~1!,
around the HCS. By applying the transformations introduc
above Eqs.~3! we obtain the dynamic equations for the re
caled variables, in the standard form of a set of Lange
equations with constant coefficients,

]

]t
dã~k,t!5M ~k!dã~k,t!1 f̂~k,t!, ~8!

where the hydrodynamic matrixM (k) represents the deter
ministic part of the Langevin equation, andf̂ represents the
rescaled internal fluctuations in the momentum and heat fl
which are characterized as Gaussian white noise by Eq.~7!.

The equation of motion for the matrix of rescaled stru
ture factors,S̃ab(k,t)5V21^dã(k,t)db̃(2k,t)&, can now
be derived from Eq.~8!, and yields

]S̃~k,t!

]t
5M ~k!•S̃~k,t!1S̃~k,t!•MT~2k!1C~k!, ~9!

whereMT is the transpose ofM . It is to be solved for given
initial valuesS̃(k,0), referring to the state in which the sy
tem has been prepared at the initial statet50.

In terms of the rescaled variables the Gaussian w
noise ~7! has the standard from withconstantcoefficients,
given by the covariance matrix,C(k), with

V21^ f̂ a~k,t! f̂ b~2k,t8!&5Cab~k!d~t2t8!. ~10!

It is diagonal with nonvanishing elements

CTT58kk2/d2n2v54g0k2jT
2/dn,

Cll 5n lk
2/nv5g0k2j l

2/n, ~11!

C''5nk2/nv5g0k2j'
2 /n,

where the elements (TT),(l l ), and ('') follow directly
from Eqs.~7! and the definitions of the correlation lengths
Eqs. ~A3! by considering ikĴl , 2ikP̂ l l /rv , and
2ikP̂ l' /rv, respectively, and using the relationd(t)
5d(t)/v(T(t)).

Here it is of interest to point out that the internal Langev
noise, ik•P̂ and ik• Ĵ, in the undriven IHS fluidconserves
energy and momentum. This is the essential difference w
the randomly driven IHS fluid of Ref.@7#, where the externa
noise doesnot conserve momentum and energy, i.e., t
noise sources are not proportional tok at small k. Conse-
quently, the noise strengths corresponding toC are missing
the factorsk2 in Eqs.~11!, which in turn lead to much longe
spatial correlations. For a more extensive discussion on
difference between Langevin noise that does or does not
serve the macroscopic conservation laws we refer to G
steinet al. @8#.
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The formal solution of Eq.~9! for the matrix of rescaled
structure factors is then

S̃~k,t!5exp@M ~k!t#•S̃~k,0!•exp@MT~2k!t#

1E
0

t

dt8exp@M ~k!t8#•C̃~k!•exp@MT~2k!t8#.

~12!

At the initial time (t50) the system is prepared in a therm
equilibrium state of elastic hard spheres with densityn and
temperatureT0. Consequently, all elements ofS̃(k,0) are
known. Moreover, the evolution equations~9! and ~3! are
only valid for k!$2p/ l 0,2p/s%. So the initial valuesS̃(k,0)
are only needed forks!2p, where they are given by thei
limiting values ask→0. @Note thatk should not be set equa
to 0, becausedñ(0,t)50 when the total number of particle
is fixed.# The nonvanishingS̃ab(k,0) with a,b5$n,T,l ,'%
are given by the equipartition values for elastic hard sph
fluids in thermal equilibrium,

S̃nn~k,0!5~T/n!~]n/]p!T[1/@2ncT
2#,

S̃TT~k,0!52/@dn#, ~13!

S̃ll ~k,0!5S̃''~k,0!51/@2n#,

where the first relation is the Ornstein-Zernike relation
density fluctuations.

B. Spectral analysis

To gain insight in the mechanisms that developed str
ture and correlations over distances much larger than
particle diameters, a spectral analysis is required. Nume
cal solutions, which will be discussed in a later subsecti
do not provide much insight, but are only needed for a
tailed quantitative comparison of the present theory with M
simulations. For a theoretical analysis it is more conveni
to study the deviations from the initial values in therm
equilibrium, defined as the excess structure factor,

S̃1~k,t!5S̃~k,t!2S̃~k,0!. ~14!

The reason is thatS̃(k,t) at fixedt approachesS̃(k,0) when
k increases. Consequently,S̃1(k,t) is only sizable for small
k, and therefore more suitable for perturbative treatm
based on hydrodynamics. This can be understood by ins
tion of the hydrodynamic matrixM (k) for the IHS fluid,
given in Appendix A. Forkl0@Ag0 all terms ofO(g0) can
be neglected, and the hydrodynamic matrix reduces to
elastic one,E(k), and Eq.~9! reduces to

E~k!•S̃~k,0!1S̃~k,0!•ET~2k!1C~k!50, ~15!

as can be verified using Eqs.~11! and ~13!. The relation
above is in fact equivalent to the fluctuation-dissipation th
rem ~7! for elastic hard spheres in rescaled units.

Subtracting this equation from Eq.~9! yields
l

re

r

-
e

,
-

t
l

t
c-

e

-

]

]t
S̃1~k,t!5M ~k!•S̃1~k,t!1S̃1~k,t!•MT~2k!1B~k!.

~16!

After some rearrangements the source term is found as

B~k!5@M ~k!2E~k!#•S̃~k,0!1S̃~k,0!

3@MT~2k!2ET~2k!#. ~17!

Its nonvanishing matrix elements are

BnT5BTn52g0aS̃nn~k,0!,

BTT522g0S̃TT~k,0!,
~18!

Bll 52g0S̃ll ~k,0!,

B''52g0S̃''~k,0!,

wherea is defined in Eqs.~A5!. The formal solution of Eq.
~16! with the initial valueS̃1(k,0)50 becomes

S̃1~k,t!5E
0

t

dt8eM (k)t8
•B~k!•eMT(2k)t8. ~19!

The spectral decomposition~A6! of M allows us to write the
componentsa,b5$n,T,l ,'% of Eq. ~19! as

S̃ab
1 ~k,t!5(

lm
B ab

lm~k!S exp@~zl1zm!t#21

zl1zm
D , ~20!

wherel,m label the hydrodynamic modes and

B ab
lm~k!5wla~k!wmb~2k!^vl~k!uB~k!uvm~2k!&,

~21!

wherevla andvmb are contracted withBab . Once the eigen-
valueszl(k) and eigenvectorsvl ,wl are known, the struc-
ture factors can be calculated. The results~20! contain expo-
nentially growing factors describing the unstable modes w
zl.0, as in the Cahn-Hilliard~CH! theory for spinodal de-
composition. The present theory includes in Eq.~8! Lange-
vin noise terms, which guarantee that the fluctuations at la
k reach their thermal equipartition values, as the collisio
dissipation can be neglected at largek. It is equivalent to the
Cahn-Hilliard-Cook theory@5#. If the Langevin noise is ne-
glected by settingC̃(k)50 in Eq. ~12!, we obtain the predic-
tions of thenoiselessCH theory,

S̃~k,t!5exp@M ~k!t#•S̃~k,0!•exp@MT~2k!t#, ~22!

or in component form

S̃ab~k,t!5(
lm

S̃ab
lm~k!exp@~zl1zm!t#, ~23!

whereS̃ab
lm(k) is defined by Eq.~21! with B̃(k) replaced by

S̃(k,0).
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The explicit solutions can be studied using the eigenv
ues and eigenfunctions in different ranges of wave numb
For the very long wavelengths in the dissipative range (kl0
!g0) this can be done byk expansion at fixedg0. The
elastic or normal range (kl0}Ag0) is accessible to analysi
by rescaling the wavelengths ask5Ag0q, consideringq
5O(1), andtaking the small-g0 limit subsequently, as dis
cussed in Appendix A.

C. Structure and correlations

Suppose we have calculated the structure factors, w
information can we extract from them? An elastic fluid
thermal equilibrium does not show any structure onhydro-
dynamic length scales (k&min$1/l 0,1/s%). This means that
the hydrodynamic structure factorsSab(k) are totally flat,
independent ofk, as can be seen in Eq.~13!. The correspond-
ing hydrodynamic correlation functions are short rang
Gab(r ,t);d(r ), on these length scales. Development
structure on length scales above the microscopic sc
$ l 0 ,s% will manifest itself in the appearance of one or mo
maxima or peaks in the structure factors. Alinear instability
will manifest itself in a structure factor that grows expone
tially in time. With these concepts in mind, we analyze t
structure factors in Eq.~20! for the IHS fluid, as we want to
determine which physical excitations are responsible for
features observed in the MD simulations and in the num
cal solutions.

Once the structure factors have been obtained, the co
lation functions can be calculated by Fourier inversio
Whena andb refer ton andT the components ofSab(k,t)
and Gab(r ,t) are scalar isotropic functions only dependi
on uku and ur u, respectively. When (a,b)5(a,b) refer to
Cartesian componentsua of the flow field, thenSab(k,t) is a
second rank isotropic tensor field, which can be separa
into two independent isotropic scalar functions:

Sab~k,t !5 k̂ak̂bSi~k,t !1~dab2 k̂ak̂b!S'~k,t !, ~24!

whereSi(k,t) andS'(k,t) are given by Eq.~6! with da and
db equal toul and u' , respectively. A similar separatio
applies to the spatial correlation functions,

Gab~r ,t !5V21(
k

exp~ ik•r !Sab~k,t !

5 r̂ a r̂ bGi~r ,t !1~dab2 r̂ a r̂ b!G'~r ,t !. ~25!

Here the scalar functionsGi(r ,t) and G'(r ,t) refer to the
tensor components ofGab(r ,t), which are, respectively, par
allel and perpendicular to the relative positionr . They do not
represent the inverse transforms of the scalar functi
Si(k,t) andS'(k,t). Firstly we note that the Fourier series
Eq. ~25! can be replaced by a Fourier integral, provided t
the system is sufficiently large. Then, for periodic bound
conditions, as used in MD simulations,V21(k can be re-
placed by (2p)2d*dk.

Secondly, the inverse Fourier transformG(r ,t) of S(k,t)
only exists as aclassical function, if S`(t)[ lim k→`S(k,t)
vanishes. If S(k,t) approaches a nonvanishing consta
S`(t), it yields adistribution d(r ). So,
l-
s.

at

,
f
es

-

e
i-

re-
.

ed

s

t
y

t

G~r ,t !5S`d~r !1E d k

~2p!d
exp~ ik•r !S1~k,t !. ~26!

Note that the limiting valuesS̃ab
` , when expressed in term

of the rescaled variables, are given by thetime and ~wave
number! independent valuesS̃ab(k,0) in Eq.~13!. This is the
reason for using the same notation as in Eq.~14!. In the
sequel it is convenient to also use the notation,

G1~r ,t !5G~r ,t !2S`~ t !d~r !, ~27!

whereG1 represents the correlation function on scales lar
than a diameter. The structure factorsS̃1(k,t) in Eq. ~19!

can be Fourier inverted. However, the functionsS̃(k,t) in
Eq. ~14! contain a partS̃(k,0), which isindependentof k in
the relevantk interval, and which yields after Fourier inver
sion a contribution proportional tod(r ). These ‘‘large-k’’
contributions are in fact the correlation functions of an el
tic hard sphere~EHS! fluid ask→0, i.e.,

Gnn~r ,t !.
n

2cT
2

d~r !,

GTT~r ,t !.
2T2~ t !

dn
d~r !, ~28!

Gab~r ,t !.
T~ t !

mn
d~r !dab .

According to Sec. II, ‘‘largek’’ means hereAg0/ l 0,k
,min$2p/l0,2p/s%. HereGnn is the coarse-grained density
density correlation function for EHS, in which the Fouri
components withks*2p have been discarded. In Append
B we derive the formulas, necessary for the analytic a
numerical Fourier inversion ofS1(k,t), as defined in Eq.
~26!. After these preparations we analyze the numerical
lutions.

D. Numerical solutions

The numerical evaluation of structure factors in Eqs.~12!
and ~22! with or without Langevin noise have been pe
formed usingMATHEMATICA . The values ofSab(k,t) ‘‘with
noise’’ are plotted as solid lines in Figs. 5, 6, and 7 f
different components (ab); those ‘‘without noise’’ as dashed
lines.

The qualitative features of the noisy and noiseless the
~solid and dashed lines in the figures! are about the same fo
small-k values (kl0,g0) as shown forSnn in Fig. 5~a! and
for Si5Sll in Fig. 6~a!. However, the predictions differ sub
stantially at large-k values, where the results of the noisele
theory do not approach the plateau valuesS„k,0), but vanish.
The reason for this incorrect prediction has been explai
above~22!.

For the transverse structure factorS' @upper solid and
dashed lines in Fig. 6~b!# the noisy and noiseless theory a
quantitatively different except in the limitk→0. In general,
in the long-wavelength and large time limit the results
both theories approach each other.
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To understand the totally different behavior of density a
velocity fluctuations, we consider the solid lines in Figs. 5~a!

and 6~a!, 6~b! for Snn(k,t)5n2S̃nn(k,t) and Sa(k,t)
5v0

2(t)S̃a(k,t) with a5(',i), where 1
2 mv0

2(t)5T(t)
5T0 exp@22g0t#. Their square roots give the actual size
the fluctuations in the density and flow fields. The dens
fluctuations for largek remain at the constant thermal noi
level. However, at small wave vectors the density fluct
tions are unstable and increase in size. The maximum inSnn
at kmax(t)52p/Lcl(t) sharpens up and shifts to small
wave vectors, whereLcl(t);At for the full range oft val-
ues, as determined numerically. So, the present theory
dicts a growing length scaleLcl(t) of density clusters in
undriven IHS fluids in the early stages of cluster formatio

FIG. 5. Density structure factorSnn , in units 1/s2, versusks
for f50.4 anda50.9, at t510, 20, 30, and 40 collisions pe
particle, exhibits the clustering instability with a growing maximu
at kmax(t), which shifts to the left whent increases. Solid and
dashed lines are the numerical solutions of Eqs.~12! and~22! with
and without Langevin noise, respectively. They differ appreciab
except at smallk. The simple analytic approximation~37!, shown in
~a! as dashed-dotted lines fort530 and 40, gives a good descrip
tion in the long-time and long-wavelength limit.~b! Numerical so-
lution of Eq. ~12! compared with MD simulation results~courtesy
of J.A.G. Orzaet al. @4#!.
d

f
y

-

re-

.

We return to the density instability in Sec. V A.
Next we consider the velocity fluctuationsSa(k,t) with

a5(',i), which are for allt,k smaller than the initial value
Sa(k,0)5T0 /r @see Figs. 6~a! and 6~b!#. Consequently, the
fluctuations in the flow field do not grow, but are at all tim
stable and bounded by the noise level in the initial equil
rium state. The plateau valueT(t)/r at fixed large-k values
decreases in time with the cooling temperature. In Sec. IV
we return to the mechanism responsible for the growing v
tices, shown in Fig. 1~a!. It is also of interest to observe tha
the locations of the maxima ofSnn in Fig. 5 and those of the

,

FIG. 6. Structure factors of velocity fluctuationsSi andS' , in
units T0s2/m, versusks for f50.4 anda50.9 illustrate the phe-
nomenon of noise reduction at small wavelengths. The initial va
Si(k,0)5S'(k,0)5T0 /r is a horizontal line, tangent to the max
mum atk50. Top panel~a! plotsSi at t510, 20, 30 and 40~lines
labeled from top to bottom!, where solid lines represent the nume
cal solution of Eq.~12!, and the dashed-dotted lines represent
approximate analytic result~31!, which is only valid fort.1/g0

.21. The dashed line represents the numerical solution of
‘‘noiseless’’ Cahn-Hilliard theory~22! at t510, which deviates
substantially from the solid line att510, except neark50. ~b!
Comparison with MD simulation results~courtesy of J.A.G. Orza
et al. @4#! at t520 for S' ~squares! andSi ~circles!.
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minima ~‘‘dip’’ ! of Si in Fig. 6 approximately coincide. I
indicates that the density instability is closely connected
the dynamics controllingSi , which turns out to be the hea
mode, as we will show in the next section.

The numerical values of rescaled temperature fluctuat
S̃TT and crosscorrelationS̃nT are shown in Figs. 7~a! and
7~b!. We first observe thatS̃TT and S̃nT show roughly the
same behavior asS̃nn ~except at smallk) with a maximum,
that shifts towards smallerk with increasing time. This sug
gests that the dynamics for (nn),(TT), and (nT) fluctuations
is controlled by the same mode, as will be shown in S
V A. An interesting feature, shown byS̃nT , is that density
and temperature fluctuations in granular fluids are antico
lated at all wavelengths. This property was also noted
McNamara@12# in his analysis of the macroscopic hydrod
namic modes of granular fluids, and is intuitively clea
When a random fluctuation creates locally an excess den
the collision rate,v}n, increases locally, which enhance

FIG. 7. Rescaled structure factors~a! S̃TT and ~b! S̃nT , all in
units s2, versusks for same the parameters as used in Fig. 5. T
structure factor in~b! vanishes initially and develops structure

time increases.S̃TT develops structure on top of its initial~plateau!
valueSTT(k,0)52/dn.1.96.
o

s

.

e-
y

.
ty,

the collisional dissipation and lowers the temperature. T
mechanism is in fact at the basis of the ‘‘phase separatio
of the homogeneous granular fluid into cold dense clus
surrounded by a hot dilute granular gas. We have also
culated the nonvanishing crosscorrelationsS̃nl and S̃Tl ,
which are purely imaginary for symmetry reasons.

An illustration of the comparison with the MD simula
tions on systems of 50 000 inelastic hard disks of Re
@1,2,4# is shown in Fig. 5~b! for Snn and in Fig. 6~b! for S'

andSi . The agreement between theory and simulations i
general very good, even for rather large inelasticitiesa
.0.6). By comparing the simulation results forS' andSi in
Fig. 6~b! with the numerical results of the theory with nois
~solid lines! and without~dashed lines!, we have observed
that the agreement in the ‘‘noisy’’ case extends over the
range ofk values, whereas in the ‘‘noiseless’’ case it is r
stricted to the small-k range, which is indeed very small fo
the transverse structure factorS'(k,t). Similar conclusions
hold when comparing the simulation results forSnn(k,t) in
Fig. 5~b! with the numerical results in Fig. 5~a! with and
without Langevin noise included. Consequently the noisel
Cahn-Hilliard theory does not agree quantitatively with t
simulation results.

So far we have established by a rather complex numer
procedure that the Langevin equations for granular flu
give predictions that agree quantitatively with MD simul
tions. Our next goal is to understand theoretically which e
citations are responsible for the observed behavior. This
be done in Secs. IV and V.

IV. FLOW FIELD PROPERTIES

A. Transverse and longitudinal structure factors

We first consider the simplest case of the transverse st
ture factorS'(k,t)5v0

2(t)S̃'(k,t) with (ab)5(''). It de-
scribes the transverse velocity or vorticity fluctuatio
ũ'(k,t), which are decoupled from the remaining Fouri
modes, and satisfy a one-component Langevin equat
where the matrixM (k) in Eq. ~8! reduces to a single numbe
z'(k)5g0(12j'

2 k2). The complete structure factor i
readily found from Eqs.~20!, ~14!, and~15!, and yields@1#

S'~k,t !5
T~ t !

r S 11
exp@2g0~12j'

2 k2!t#21

12j'
2 k2 D . ~29!

This expression is plotted as the uppersolid line in Fig. 6~b!.
It does not grow, but slowly decays at larget as S'(k,t)
.(T0 /r)exp(22g0j'

2k2t)/(12j'
2k2), the faster the largerk.

At the largest wavelengths (j'
2 k2!1) it simply represents

vorticity diffusion on the ‘‘internal’’ time scalet, with a
diffusivity g0j'

2 5n/v. Therefore, the typical length scale o
vortices grows likeLv(t);2pj'A2g0t;2pAnt/v, which
is independent of the degree of inelasticity.

Next, we consider the rescaled longitudinal structure f
tor S̃i(k,t) with (ab)5( l l ), where the most dominant term
for larget in ~20! is (lm)5(HH), as can be seen from Fig
3. There is no coupling to the shear modes. This leads in
structure factorSi(k,t)5v0

2(t)S̃i(k,t) to a slowly decaying
contribution with an overall decay rate proportional tok2.

e
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All remaining contributions decay faster; at least as fast
v0(t);exp(2g0t), providedt@1/g0. The slowest decay oc
curs at very long wavelengths, i.e., in thedissipativerange
(kl0!g0). To calculate the dominant (HH) contribution to
Eq. ~20! we need the coefficientB l l

HH(k). It follows for small
k from Eqs.~21!, ~18!, and~A8!, and is given by

B l l
HH~k!52g0S̃ll ~k,0!5

g0

n
. ~30!

Inserting these data in Eq.~20! and combining it with Eq.
~14! yields for kl0!g0 andg0t@1,

Si~k,t !5
T~ t !

mn S 11
exp@2g0~12j i

2k2!t#21

12j i
2k2 D , ~31!

where the dispersion relationzH(k)5g0(12j i
2k2) has been

used. Note that the analytic (HH) approximation is only
valid for g0t@1, whereas the numerical result is valid for a
g0t. This long-wavelength and long-time approximation fo
Si has the same form as the exact result~29! with j' re-
placed byj i . In Fig. 6~a! we compare the result~31! ~dot-
dashed lines! with the numerical solution~solid lines!, pre-
sented in Sec. III A. It is straightforward to also obtain
analytic approximation, which applies in the elastick range,
wherekl0}Ag0. However, we do not show this result as t
extrapolation of the simple small-k approximation~31! cap-
tures forg0t.1 the global features at smallk as well as the
plateau values at larger-k quantitatively. It misses, howeve
the little dip at intermediate-k values~see, however, Sec. V!.

The behavior of the longitudinal structure factor on t
largest length scales and for timest@1/g0 follows again
from Eq. ~31! as Si(k,t).(T0 /r)exp(22g0ji

2k2t). This im-
plies that the heat mode on the largest spatial and temp
scales is a purely diffusive mode with a diffusivityg0j i

2 . It
is much larger than the diffusivityg0j'

2 for the vorticity
~see Fig. 4!, and the associated length scale grows l
L i(t);2pj iA2g0t. Inspection of the eigenmode

$w̃H(k),ṽH(k)% in Eqs.~A8! of Appendix A fork→0 shows
that this diffusive mode is a purely longitudinal velocity fie
ũl(k,t). Its diffusivity g0j i

2 , defined in Eq.~A4!, depends
for small inelasticities (g0→0) mainly on thermodynamic
variables, like compressibility and pressure, and only sligh
on transport coefficients.

The physical implications of Fig. 6 are quite interesting
shows the phenomenon ofnoise reduction@17# at small
wavelengths. With increasing time the fluctuationsSi(k,t)
andS'(k,t) in the flow fielddecreaseat larger-k values and
remain for allk bounded by their initial equipartition valu
T0 /r, which is independent ofk. This can be rephrased b
stating that the flow field exhibits only a ‘‘relative’’ instabil
ity. The noise reduction is a direct consequence of the
croscopic inelastic collision dynamics, which forces the p
ticles to align more and more in successive collisions. I
this ‘‘physical coarse graining’’ process that selectively su
presses the shorter-wavelength fluctuations in the flow fi
in an ever-increasing range of wavelengths. Consistent w
this picture is also the selective suppression of the div
gence of the flow fieldui(k,t), which decays at a much
faster rateg0j i

2k2 than its rotational partu'(k,t) that decays
s

ral

e

y

t

i-
-
s
-
ld
th
r-

with a rateg0j'
2 k2. So, noise reduction is the pattern sele

tion mechanism, responsible for the growing vortex stru
tures observed in Fig. 1. The mechanism for pattern form
tion that creates the peaks inS'(k,t) andSi(k,t) at k50 in
reciprocal space is, in fact, very similar to the process
peneplanationin structural geology@6# for peak formation in
real space, where the earth surface around the peak is gr
ally being removed by selective erosion. The formation
Mount Uluru ~Ayers Rock! in the center of Australia is an
outstanding example of peneplanation.

B. Correlations in incompressible flows

There is an interesting limiting case of the theory, t
incompressible limit@1#, that greatly simplifies and eluci
dates the analytic solution of the full set of coupled line
ized equations~8! for hydrodynamic fluctuations. It is wel
known from fluid dynamics and the theory of turbulen
@33,20# that ordinary elastic fluid flows are quite incompres
ible. This implies that“•u50 and as a consequence th
longitudinal modeul(k,t).0. Then, the nonlinear Eq.~1!
for the transverse flow field or, equivalently, for the vorticit
practically decouples from the remaining hydrodynam
equations. In the comoving reference frame there is onl
nonlinear coupling of the temperature fluctuations to th
transverse flow field through the nonlinear viscous heati
hu“uu2. We therefore expect that the IHS fluid in the nea
elastic case can be considered as incompressible, at lea
lowest approximation.

What are the consequences of this assumption? The s
ture factorSnn(k,t) of density fluctuations does not evolve
time on account of Eqs.~A1! and ~A2!. The temperature
fluctuationdT(k,t) in Eq. ~A1! simply decays as a kinetic
mode and the average temperature stays spatially hom
neous. Clearly, the assumption is too drastic a simplificat
to describe the density and temperature fluctuations. H
ever, an approximate theory based on vorticity fluctuatio
alone is justified to describe the correlations in the flow fie
as discussed in Sec. IV A.

So, we combine the assumption of incompressibili
Si(k,t)50, with S'(k,t) in Eq. ~29!, using Eqs.~24! and
~25!. This enables us, for thermodynamically large system
to explicitly calculate the correlation functionsGab(r ,t) of
the velocity field, by inverse Fourier transformation, i.e.,

Gab
1 ~r ,t !5 r̂ a r̂ bGi

1~r ,t !1~dab2 r̂ a r̂ b!G'
1~r ,t !

5E d k

~2p!d
exp~ ik•r !~dab2 k̂ak̂b!S'

1~k,t !.

~32!

The Fourier transform has been calculated in Appendix
and yields for the two scalar functionsGl

1(r ,t) with l
5$i ,'%

Gl
1~r ,t !5

T~ t !

mnj'
d

glS r

j'

,2g0t D , ~33!

wheregl(x,s) is given in Eqs.~B11! of Appendix B. Both
functions are not independent, butg' can be calculated from
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gi using Eq.~B7!. This is a well-known relation in the theor
of homogeneous and isotropic turbulence in incompress
flows ~see Refs.@33# and @19#, Chap. 3!.

As an explicit example we show the result for inelas
hard disks in Fig. 8, which is most relevant for a comparis
with existing computer simulations. Their analytic form is

gi~x,s!5
1

2px2E0

s

ds8es82x2/4s8, ~34!

and g'5](rg i)/]r . The functiong'(x,s) has a negative
minimum, whilegi(x,s) is positive for allx,s,d; there are
algebraictails gi(x,s);2(d21)g'(x,s);Cx2d with a co-
efficientC and a correction term ofO@exp(2x2/4s)#, explic-
itly given in Eq. ~B12!. These functions have structure o
hydrodynamic space and time scales where bothx5r /j' and
s52g0t can be either large or small with respect to unity.
small inelasticity (g0→0) the dynamic correlation lengthj'

and mean free pathl 0 are well separated.
Long-range spatial correlations in systems with sho

range interactions are a generic feature of nonequilibr
steady states~NESS! ~see the reviews on driven diffusiv
systems@8# or systems with imposed temperature gradie
@34#!. Two remarks are in order here. Firstly, the presence
long-range spatial correlations, as found in granular flu
shows that these typical results for NESS carry over
classes of adiabatically changing states, such as here th
mogeneous cooling state where the temperature cha
adiabatically. Secondly, an essential feature for the existe
of long spatial tails in NESS is a breaking of the isotrop
spatial symmetry@34#. In incompressible flows this symme
try is broken by settingul(k,t)50, and keeping only the
transverse velocity field.

A more systematic comparison between the theoret
predictions~34! and molecular dynamics simulations is ma
in Refs. @1,4#. In Fig. 8 we show the results from a sing
simulation run at packing fractionf50.4, and small inelas
ticity a50.9. The parallel partGi(r ,t) exhibits a tail;r 2d

@see Fig. 2~a! in Ref. @1## and shows good agreement up
t5100, which is well beyond the crossover timetc567 ~de-

FIG. 8. Comparison of theoretical predictions~34!, based on
incompressibility, with MD simulation results forGi ~filled circles!
andG' ~open circles!, in unitsT0 /m, versusr /s. Parameter values
aref50.4, a50.9, andt540.
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fined in Fig. 2! that separates the linear regime from t
nonlinear clustering regime. The minimum inG'(r ,t) at
Lv(t) can be identified as the mean diameter of vortic
shown in Fig. 1. The analytic result forG'(r ,t) in Eq. ~34!
for large times shows that thatLv(t);2pj'A2g0t is grow-
ing through vorticity diffusion.

Apart from the restrictions to hydrodynamic space a
time scales, there are two essential criteria limiting the
lidity of the incompressible theory:~i! system sizesL must
be thermodynamically large(L@2pj'), so that Fourier
sums overk space can be replaced byk integrals.~ii ! In
principle, times must be restricted to thelinear hydrody-
namic regime (t&tc), so that the system remains close
the HCS. In fact, the simulations show that our description
the fluctuations in terms of a Langevin equation based
incompressibility is correct over a time range much larg
thantc . This is understandable because velocity correlati
do not grow in amplitude~peneplanation!, and are only
weakly coupled to the exponentially growing density fluctu
tions.

C. Correlations in compressible flows

In this section we extend the theory to compressible flo
@2#. The description of the velocity fluctuationsGab(r ,t) in
Sec. IV B was based on fluctuating hydrodynamics for
vorticity fluctuations only, i.e., the absence of longitudin
fluctuations~incompressibility assumption!. Figure 6~b! con-
firms that this assumption is very reasonable indeed
nearly elastic fluids, asSi

1(k,t)5Si(k,t)2T/r is vanish-
ingly small down to very small-k values. However, for the
smallest wave numbers, the incompressibility assump
breaks down. As the analysis of Eqs.~29! and ~31!, as well
as the numerical evaluation in Fig. 6 show, the struct
factorsSi(k,t) andS'(k,t) become equal ask→0. This im-
plies for large distancesGab(r ,t);S'(k→0,t)dabd(r ), and
thus the absence of algebraic long-range correlations on
largest scales (r @2pj i). Therefore, we can already con
clude that the asymptotic behavior ofG'(r ,t) and Gi(r ,t)
cannot ber 2d. Instead ther 2d tail, obtained in Sec. IV B,
describes intermediate behavior which is exponentially
off at a distance determined by the width ofSi

1(k,t). This
width can be estimated from the eigenvalues of the hydro
namic matrix, more precisely from the dispersion relation
the heat mode, which is a purely longitudinal velocityũl for
k→0. To second order ink its dispersion relation is given by
zH(k)5g0(12k2j i

2). Note that for small inelasticitiesj i and
j' are well separated~see Fig. 4!, asj i;1/g0, whereasj'

;j l;jT;1/Ag0.
Using the analytic approximation~31! for Si(k,t), valid

for small k and larget, the structure factorSab
1 (k,t) can be

written as

Sab
1 ~k,t !'

T~ t !

r E
0

s

d s8es8@ k̂ak̂b exp~2s8k2j i
2!

1~dab2 k̂ak̂b!exp~2s8k2j'
2 !#, ~35!

where s52g0t. If the system is thermodynamically larg
(L@2pj i), Gi

1(r ,t) and G'
1(r ,t) can be obtained by per

forming integrals overk space and yield expressions in term
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of integrals over simple functions, as derived in Appendix
Here we only quote the analytic approximation ford52:

Gl
1~r ,t !'

T~ t !

r H 1

4pjl
2E0

s

ds8
exp~s82xl

2/4s8!

s8

1
sl

2pr 2E0

s

ds8es8FexpS 2
xi

2

4s8
D

2expS 2
x'

2

4s8
D G J ~36!

for l5(i ,'), where xl5r /jl , s i51, and s'521. We
first observe that, in the time regimet;1/g0 , Gl

1(r ,t) has
structure both on the scaler;2pj' as well as onr
;2pj i . Moreover,Gi

1(r ,t) is positiveboth in the incom-
pressible as well as in the compressible case becausj'

,j i . In Fig. 9 we show the above approximations for d

FIG. 9. ~a! gi(x,s) and ~b! g'(x,s) versusx5x'5r /j' for s
52g0t52. The solid lines correspond to Eq.~34! in the incom-
pressible limit (j i /j'→`), and the dashed lines to approximatio
~36!, for j i /j'51,2,5,10. Asj i /j' decreases, ther 22 tail in ~a! is
cut off exponentially at smaller distances and finally disappear
j i5j' . The depth of the minimum in~b! decreases with decreasin
j i /j' and finally disappears atj i5j' .
.

ferent values of the ratioj i /j' , together with the resultr 2d

for the incompressible limit of Sec. IV B, which is obtaine
for j i→`. At finite g0, Eq. ~36! describes exponentially de
caying functions at distancesr *2pj i . Moreover, upon in-
creasing the inelasticity the minimum inG'(r ,t) becomes
less deep and vanishes atj i5j' , and the modifications of
the compressible theory become large~see Fig. 10!.

The predicted spatial velocity correlationsGi(r ,t) and
G'(r ,t) have been obtained by performing inverse Bes
transformations on the numerical results forSi(k,t) and
S'(k,t). At small inelasticity (a*0.9) the functionsGi(r ,t)
and G'(r ,t), calculated from the full set of hydrodynami
equations, differ forr &2pj i only slightly from the results
for incompressible flow fields~see the discussion in Sec
IV B !. However, the algebraic tails;r 2d in Gi(r ,t) and
G'(r ,t) for r *2pj' , as derived in Sec. IV B, are exponen
tially cut off for r *2pj i , as implied by Eq.~36!. As the
correlation lengthsj';1/Ag0 and j i;1/g0 are well sepa-
rated for smallg0, there is an intermediate range ofr values
where the algebraic tail;r 2d in Gi(r ,t) can be observed.

At higher inelasticityj i and j' are not well separated
and, as a consequence, there doesnot exist a spatial regime
in which the longitudinal fluctuations in the flow field can b
neglected and the regime of validity of the incompressi
theory has shrunk to zero. Figure 10 compares results f
incompressible and compressible fluctuating hydrodynam
@the solid line indicates numerical solution; the dashed in
cates the for analytic approximation~36!# with simulation
data for G'(r ,t) at f50.4 anda50.6, and confirms the
necessity of including longitudinal velocity fluctuations
calculate the spatial velocity correlations at reasonably la
inelasticities. The agreement between compressible the
and MD simulations is very good, even at large inelasticiti

V. INSTABILITIES AND DENSITY CLUSTERS

A. Structure factors

So far, we have seen that the velocity structure fac
S'(k,t) andSi(k,t), develops a peak by ‘‘selective suppre

at

FIG. 10. Perpendicular velocity correlationG' , in unitsT0 ver-
susr /s for packing fractionf50.4, relatively high inelasticitya
50.6 andt540. Simulation results are compared with predicti
~34! of the incompressible theory~dashed line!, and the numerical
solution ~solid line! of the full set of fluctuating hydrodynamic
equations.
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sion’’ of its large-k components, where the top of the pe
remains at its initial value~‘‘peneplanation’’ in structural
geology!. Next we will focus on the unstable structure fact
Snn(k,t), which describes the density clustering in undriv
IHS fluids. A real space analog of this phenomenon of str
ture formation corresponds to ‘‘uplifting’’ in geological ter
minology, with the Alps as a typical example. In the comp
rable case of spinodal decomposition the phase separati
driven by a single unstable mode, the composition fluct
tions, described by the macroscopic diffusion equat
] tdn(k,t)5zD(k)dn(k,t), where the growth rate has th
typical form zD(k)5Dk2(12 1

2 jD
2 k2). The corresponding

structure factor~22! in the noiseless Cahn-Hilliard theor
would have the formSnn(k,t);exp@2zD(k)t#, and exhibits a
maximum growth rate atkmax51/jD , where zD(k) has a
maximum. This time-independent length scale fails to
scribe the growing length scales of the patterns observe
spinodal decomposition@5#.

For the granular fluid we first consider a naive version
the noiselessCahn-Hilliard theory, proposed by Deltour an
Barrat @15#. These authors assume that the structure fa
Snn can be described by the unstable density field, i
Snn(k,t).Snn(k,0)exp@2zH(k)t#, with the growth ratezH(k)
of the unstable heat mode. AszH(k) decreases monoton
cally with k, as shown in Fig. 3, this structure factor show
the fastest growth at thesmallestwave numberkmin52p/L
allowed in a box of lengthL, and does not explain the dy
namics of cluster growth.

Next we consider the full theory of Sec. III A with Lange
vin noise included. The rescaled structure factorSnn

1 (k,t) in
Eq. ~20! contains exponentially growing terms, exp@(zl

1zm)t# providedzl1zm.0. Inspection of the dispersion re
lations in Fig. 3 shows a fast growth rate 2zH for k below the
stability thresholdkH* , and a much slower growth rate (zH

1z1), less than half of the previous one, that can be
glected forg0t@1.

So far the arguments are as in Sec. IV C. The big diff
ence is that the size of the fluctuations in the flow field
given by Sa

1(k,t)5v0
2(t)S̃a

1(k,t) with a5(',i), where

v0
2(t) decreases faster thanS̃a

1 increases, and there is n
growth whatsoever. However, the exponential growth in
density fluctuationsSnn

1 (k,t)5n2S̃nn
1 (k,t) is not suppressed

by the rescaling factorn2. Thus the dominant growth rate i
Eq. ~20! for g0t@1 is

Snn~k,t !.
n

2cT
2

1n2B nn
HH~k!

e2zH(k)t21

2zH~k!
, ~37!

wherezH is given in Eq.~4! andn/2c2 is the plateau value
We calculate the coefficientB nn

HH(k) in Eq. ~21! both for the

dissipative and elastic ranges. The eigenmodes$w̃H(k),w̃H

(2k)t% in Eq. ~A8! and the relation B nn
HH

5uw̃Hn /w̃Hl u2B l l
HH in combination with Eq.~30! yield then

B nn
HH~k!5k2l 0

2/ng0 ~kl0!g0!

5
g0db2

4ncT
2cs

4 S d

4
ab2cT

2D ~kl0;Ag0!, ~38!
-

-
is
-

n

-
in

f

or
.,

-

-
e

e

with coefficients defined in Eqs.~A3!–~A5!.
Equations~37! and ~38! for Snn give a fair analytic ap-

proximation of the ‘‘numerical’’ solution@solid line in Fig.
5~a!# for g0t*2. The ‘‘dissipative’’ approximation
Snn

(diss)(k,t) @dashed-dotted line in Fig. 5~a!# applies forks
&0.12(kl0&0.9g0), and has a maximum forg0t.1. The
‘‘elastic’’ approximation Snn

(el)(k,t) applies for ks*kH* s
.0.16(kl0.1.1g0), and its value atk5kH* is for t540
.1.9/g0 andt580, respectively, 75% and 92% of the co
responding numerical value.

It is instructive to compare the abovek values for Fig.
5~a! with the dispersion relationszH(k) in Fig. 3 for the heat
mode which refers to the same density and inelasticity.
wave numbers below the stability threshold (k,kH* ) the den-
sity fluctuations grow, and fork.kH* the density fluctuations
remain at the thermal noise level. Furthermore, numer
solutions of the theory with@solid lines in Fig. 5~a!# and
without noise@dashed lines in Fig. 5~a!# agree in the dissi-
pative range as well, but disagree fork above the threshold
kH* .

The analytical result~37! demonstrates that the instabilit
is driven through a coupling to the unstable ‘‘heat’’ mod
which is, in the small-k range, a longitudinal velocity mode
The coupling of the density fluctuation to the unstable h
mode is rather weak,B nn

HH;O(k2), which explains why
structure in the flow field appears long before density cl
ters appear.

The wave numberkmax(t) of the maximum growth ofSnn
in Eq. ~37! determines the typical length scale of the dens
clusters. For 2g0t@1, it can be determined analytically a
Lcl(t);2p/kmax(t)52pjiA2g0t, which is the same length
scale,L i(t), as appeared inSi . The good agreement betwee
theory and MD simulations, shown in Fig. 5, confirms th
the initial growth of density inhomogeneities is indeed co
trolled by the longitudinal flow field with a length scale
Lcl(t);At/g0 at small inelasticityg0, andnot by the trans-
verse flow field with a length scaleLv(t);2pj'A2g0t
;At, independent ofg0.

The pattern selection mechanism for the vortex structu
is very different from the mechanism that leads to the f
mation of density clusters. The latter one is the more co
mon linear instability in density or composition fluctuation
which also occurs in spinodal decomposition@5#; the former
one is analogous to peneplanation, as discussed in Sec. I

Finally we consider the temperature fluctuationsS̃TT(k,t)
and the crosscorrelationS̃nT(k,t) in Figs. 7~a! and 7~b!. The
most dominant contribution to Eq.~20! comes again from
two heat modes, and one readily finds that forg0t@1,

S̃ab
1 ~k,t!5Rab~k!S̃nn

1 ~k,t! ~39!

with a time-independent coefficientR(k),

RnT~k!5~b2a!/2 ~kl0!g0!524cT
2/db ~kl0;Ag0!,

~40!

with coefficients defined in Eq.~A5!. Similarly one finds
RTT5RnT

2 . This explains qualitatively why the excess stru

ture factorsS̃TT
1 and S̃nT

1 have roughly the same shape
Snn .
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On the other hand, the structure factorsS̃TT
1 (0,t) and

S̃nT
1 (0,t) at k50 can be calculated directly from Eqs.~9! and

~A2!, and yield

S̃TT~0,t!52
a

2n
~12e2g0t!,

~41!

S̃nT~0,t !5
a2

2n
~12e2g0t!21

2

dn
e22g0t.

This result explains thet variation of both structure factor
aroundk50 as shown in Figs. 7~a! and 7~b!. There exist
nonuniformities in the (k,t) behavior. The limitsk→0 at
fixed t, and the limit t→0 at fixed k, cannot be inter-
changed.

B. Spatial correlations

To obtain predictions for the density-density correlatio
Gnn(r ,t), we have to calculated-dimensional Fourier inver-
sions of Snn(k,t), or ratherSnn

1 (k,t), as discussed aroun
Eqs. ~26! and ~27!. As it is a scalar function ofk5uku, its
inverse can be reduced to a one-dimensional Bessel tr
form, as shown in Appendix B in the transition from Eq
~B2! to ~B5!.

The Bessel transforms of the numerical data forSnn(k,t),
obtained in Sec. III D, have been carried out numerica
usingMATHEMATICA , and are shown in Fig. 11~a!, and simi-
lar results forGnT(r ,t) are in Fig. 11~b!. The spatial density
correlation Gnn(r ,t), obtained numerically fromSnn(k,t),
exhibits a negative correlation centered around a dista
which for large times grows asAt.

Unlike the case of velocity correlations in Eq.~31!, no
analytic approximation is available that covers both
small- and large-k behavior ofSnn(k,t) correctly. However,
the behavior~37! for kl0;Ag0 (g0 small! and kl0!g0 is
expected to describe correctly the large distance behavio
Gnn(r ,t) in the ranger;2p l 0 /Ag0 and r @2p l 0 /g0, re-
spectively. The inverse Fourier transforms of both expr
sions in Eqs.~37! and~38! can easily be calculated and yie
for the dissipative range (r @2p l 0 /g0),

1

n2
Gnn

. ~r ,t !.
l 0
2

2g0nj i
d12

gn
.S r

j i
,2g0t D , ~42!

and for the elastic range (r;2p l 0 /Ag0),

1

n2
Gnn

, ~r ,t !.
B nn

HH

2g0jH
d

gn
,S r

jH
,2g0t D . ~43!

All factors on the right-hand side are dimensionless qua
ties, and the functionsg(x,s) are given by

gn
.~x,s!52

es2x2/4s

~4ps!d/2
1E

0

s

ds8
es82x2/4s8

~4ps8!d/2
,

~44!

gn
,~x,s!5E

0

s

ds8ez0s82x2/4s8/~4ps8!d/2.
s

s-

y

ce

e

of

-

i-

We recall from Eqs.~A3! and ~A4! that j i;1/g0 and jH

;jT;1/Ag0, so that the behavior in Eqs.~42! and ~43! is
indeed on the expected scales. The functiongn

. does have
the same qualitative shape as Fig. 11~a!. The location of the
minima also increases for large times asAt, but the minima
of g.(x,s) are too shallow and too far to the right to giv
quantitative agreement with the asymptotic result~42!. The
behavior predicted bygn

,(x,s) is strictly positive, and de-
scribes the curves in Fig. 11~a! for r to the right of the zero
crossing, wherer;jH .

Comparison with simulation results confirms that t
present theory correctly predicts the buildup of density c
relations in the time regimet,tc . For a more comprehen
sive comparison of the density correlation functions w
MD simulations at different densities and different inelasti
ties, we refer to Ref.@4#, where also the range of validity o
the present theories is investigated.

In summary, the typical length scales of vorticesLv(t)
;At and of density clustersLcl(t);At/g0, also correspond
to the typical length scales on which the equal-time corre

FIG. 11. Spatial correlation functions~a! Gnn(r ,t), in units
1023/s4, and~b! GnT(r ,t)/T(t), in units 1023/s2, versusr /s ob-
tained numerically from the structure factors shown in Fig. 7 at
same parameters as used in Fig. 5. Both functions show a gro
correlation length.
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tion functions G'(r ,t),Gi(r ,t), and Gnn(r ,t) show struc-
ture, which extend far beyond the microscopic and kine
scales.

VI. CONCLUSION

In this paper the structure factorsSab(k,t) and corre-
sponding spatial correlation functionsGab(r ,t) have been
calculated and compared with two-dimensional~2D! mo-
lecular dynamics simulations for weakly inelastic hard d
systems, whereg05(12a2)/2d is small, using the hydrody
namic equations of an elastic fluid, supplied with an ene
sink representing the collisional dissipation. Also, we ha
assumed that the homogeneous cooling state~HCS! is an
adiabatically cooling equilibrium state, which is only corre
to lowest order ing0.

The basic theory is developed in Secs. III A, III B, an
III C, modeled on the Cahn-Hilliard theory for spinodal d
composition. To understand the physical excitations t
drive the instabilities, we have presented a theoretical an
sis of the structure factors using a spectral analysis of
unstable Fourier modes. This is done in Sec. IV for struct
factors and spatial correlations in the flow field, and in S
V for the density and temperature fields. The analysis give
simple analytic description, valid forg0t.1, as given in
Eqs.~29!, ~31!, and~37!.

It shows that the dynamics of thetransverseand longitu-
dinal flow fields on the largest length scales are controlled
two stable purely diffusive velocity fields with very differen
diffusivities. Agreement between the predictions of fluctu
ing hydrodynamicswith Langevin noise forSi andS' , and
the results of MD simulations is very good, and holds
beyond the crossover timetc , defined in Fig. 2. For in-
stance, up tot.100 in Fig. 8 wheretc.67. Without the
noise terms there is no quantitative agreement.

Calculation of the structure factorSnn(k,t) for the density
fluctuations is essentially a linear stability analysis, wh
describes the early stages of clustering. It is expected
break down with increasing time, because the density fl
tuations are predicted to grow at an exponential rate. Th
indeed seen to happen as the timet approaches the crossov
time tc to the nonlinear clustering regime, as defined in
caption of Fig. 2. The agreement with MD simulations f
t,tc is again good. Moreover, the simple analytic appro
mation ~37!, based on the dynamics of the unstable h
mode and valid forg0t*2, shows that the whole peak i
Snn(k,t) lies in thek range below the stability threshold fo
the heat mode (k,kH* ), and that the fluctuations withk
.kH* are essentially at thermal noise level.

The density structure factorSnn(k,t) shows that spatia
density fluctuations in undriven IHS fluids are unstable, a
lead to the formation of density clusters. The linear insta
ity is driven by longitudinal velocity fluctuations and de
scribed by a coupling coefficient ofO(k2) in Eqs. ~37! and
~38! for Snn . The fluctuations in the flow field are onlyrela-
tively unstable, and do not lead to exponential growth of
corresponding structure factors. Nevertheless, the dissipa
IHS fluid develops structure on intermediate scales with ty
cal length scalesLcl(t);j iAg0t;At/g0 for the mean clus-
ter sizes, andLv(t);j'Ag0t;At for the mean vortex di-
ameters.
c

y
e

t

t
y-
e
e
.
a

y

-

r

to
c-
is

e

-
t

d
l-

e
ve
i-

Sections IV C and V B deal with spatial correlations. T
assumption of incompressible flow for nearly elastic ha
spheres (a*0.9) leads to spatial velocity correlations, in
cluding algebraicr 2d tails, that are correct up to large dis
tances (r &2pj i). We have verified by MD simulations an
numerical calculations that atsmall inelasticitiesSi

1(k,t) es-
sentially vanishes for all wave numbers except at very sm
k values (k&1/j i), where the assumption of incompressib
u fluctuations, made in Sec. IV A, breaks down. Cons
quently, at small inelasticities the most important qualitat
modification thatSi

1 adds to the spatial correlation functio
Gi(r ,t) is to provide an exponential cutoff for ther 2d tail at
the largest scalesr *2pj i . At larger inelasticities the non-
vanishing contributions fromSi

1(k,t) modify Gi(r ,t) and
G'(r ,t) significantly at all distances.

The good quantitative agreement between theory
computer simulations shows that our theory for structure f
tors,Sab(k,t) andSnn(k,t), and spatial correlation functions
Gab(r ,t) andGnn(r ,t), is correct for wave number, position
and time dependence in the relevant hydrodynamic ra
and for inelasticities (a*0.6) that are not too large.
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APPENDIX A: TRANSPORT COEFFICIENTS

Linearization of the hydrodynamic equations~1! around
the HCS results in the following set of equations:

] tdn52n“•u,

] tu52
1

r
“p1n¹2u1~n l2n!““•u, ~A1!

] tdT5
2k

dn
¹2dT2

2p

dn
“•u2dG.

The pressurep is assumed to be that of elastic hard sphe
~EHS!, p5nT(11Vdxnsd/2d), where Vd52pd/2/G(d/2)
is thed-dimensional solid angle, andx(n) is the equilibrium
value of the pair correlation function of EHS of diameters
at contact. In three dimensions the Carnahan-Starling
proximation givesx5(22f)/2(12f)3 @35#, in two dimen-
sions the Verlet-Levesque approximation givesx5(1
27f/16)/(12f)2 @36#.



st

tz

e

ia

y

ct
e
of

m

the

des,

ally
the
f the
the

be

d

g in

nva-

d
c-
-
c-

Here

to

1780 PRE 61T. P. C. van NOIJE AND M. H. ERNST
The transport coefficientn, n l , andk for hard disks and
hard spheres are given by the Enskog theory for ela
spheres@28#, and rn5h and rn l52h(121/d)1z are ex-
pressed in shear and bulk viscosityh and z, respectively.
The collision frequency in the Enskog theory isv
5Vdxnsd21v0 /A2p where the thermal velocityv0

5A2T/m, and temperature is measured in units of Bol
mann’s constantkB .

Carrying out the linearization and rescaling describ
above Eq.~3! yields the hydrodynamic matrix

M ~k!5S 0 0 2 ikl 0 0

2g0a b~k! 2 ibkl0 0

2 icT
2kl0 2

d

4
ibkl0 d l~k! 0

0 0 0 d'~k!

D
~A2!

with transport coefficient and correlation lengthsja ,

d'5g02nk2/v[g0~12k2j'
2 !,

d l5g02n lk
2/v[g0~12k2j l

2!, ~A3!

b52g022kk2/dnv[2g0~11k2jT
2!.

Moreover, we need the correlation lengthsjH5jT(cT /cs)
andj i , with

j i
25j l

21~ l 0 /g0!2FcT
21

1

8
db~b2a!G ~A4!

to be derived below. Note that allja;1/Ag0 except j i
;1/g0, which is much larger.

The thermodynamic quantities are

a52F11
n

x

dx

dnG , cT
25

vT
2

v0
2

5
1

2T S ]p

]nD
T

,

~A5!

b5
2p

dnT
, cs

25
vs

2

v0
2

5cT
21

d

4
b2,

wherevT and vs are, respectively, the isothermal and ad
batic speed of sound for EHS fluids.

The eigenvalues of the asymmetric matrixM (k) are de-
noted by zl(k) and its right and left eigenvectors b
wl(k),vl(k) respectively. Herel56 labels the sound
modes,l5H the heat mode, andl5' labels (d21) degen-
erate shear or transverse velocity modes. The eigenve
form a complete biorthonormal basis, which satisfi
^vluwm&5dlm , and allows a spectral decomposition
M (k) in the form

M ~k!5(
l

uwl~k!&zl~k!^vl~k!u. ~A6!

Moreover, the eigenvalue equation, det@z(k)I2M (k)#50,
is an evenfunction of k. Consequently,M (k) and M (2k)
have the same eigenvalues, which are either real or for
ic

-

d

-

ors
s

a

complex conjugate pair. So we choosezl(k)5zl(2k)
5zl(k). The corresponding eigenvectors ofM (2k) in the
case of propagating sound modes are obtained from
transformation $w1(2k),v2(2k)%↔$w2(k),v1(k)%. All
other eigenvectors, corresponding to nonpropagating mo
are invariant under the transformationk→2k.

Inspection of Eq.~A2! gives for the shear modesz'(k)
5g0(12k2j'

2 ) and w'(k)5v'(k)5ũ'(k). This mode is
unstable, i.e., has a positive growth ratez'(k) for k below
the stability thresholdk'

* 51/j';Ag0/ l 0.
The eigenvalues of the remaining 333 matrix are the

roots of a cubic equation. They are determined numeric
and shown in Fig. 3. The characteristic properties of
spectrum and eigenmodes are discussed in the body o
paper after Eq.~3!. The more technical aspects needed in
calculations are summarized below.

There is a second unstable mode, the heat mode withzl

.0 for k,kH* . This stability threshold is the root ofzH(k)
50 or equivalently of detuM (k)u50, and yields simply

kH* 5
1

jT
S dab

4cT
2

21D 1/2

. ~A7!

The three remaining eigenvalues and eigenvectors can
calculated perturbatively. In thedissipativerange (kl0!g0)
this is done by an expansion in powers ofk, and yields after
lengthy but straightforward calculations, the eigenvaluezH

5g0(12k2j i
2) @see Eq.~4!#, and the corresponding left an

right eigenvectors, where components are labeled as (n,T,l ),

wH~k!5S 2
ikl 0

g0
,
ikl 0

2g0
~a2b!,1D ,

~A8!

vH~k!5X2 ik

g0
S d

8
ab2cT

2D ,2
ikdb

8
,1C

with normalization ^vHuwH&511O(k2). The ‘‘sound’’
modes are stable for all wavelengths, and nonpropagatin
this k range. Inspection of Fig. 3 shows that the mode (l5
1) decays diffusively (z1}2k2), whereas the mode (l5
2) decays rapidly (z2}2g0). The explicit forms ofz1 and
z2 are not needed here. They can be found in@37#. The
corresponding eigenmodes are only needed to lowest no
nishing order ink and read

w1~k!5~1,2a,0!, w25~0,1,0!,
~A9!

v1~k!5~1,0,0!, v25~a,1,0!.

In the dissipative range, ask→0, the heat mode~A8! is a
purely longitudinal velocity fluctuation, while the soun
modes~A9! are a mixture of density and temperature flu
tuations. To first order ink, density and temperature fluctua
tions couple to the heat mode, and longitudinal velocity flu
tuations couple to the sound modes.

For larger wave numbers (kl0;Ag0) the conventional
character of the sound and the heat modes is recovered.
we solve the eigenvalue problem by settingk5Ag0q, taking
q5O(1), anddetermine the eigenvalues and eigenvectors
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dominant order asg0→0 ~nearly elastic case!. The eigen-
value for the heat mode in theelastic rangeis then

zH~k!5g0jH
2 ~kH*

22k2![g0~z02k2jH
2 !, ~A10!

as listed in Eq.~4!, andvg0jH
2 5DT is the heat diffusivity of

the elastic hard sphere fluid. The corresponding eigenvec
are

wH~k!5
1

cs
S d

4
b,2cT

2 ,2dbzH~k!/4ik D ,

~A11!

vH~k!5
1

cs
„b,21,@ag02bzH~k!#/ ikcT

2
….

In the elastic limit (g0→0) the componentswHl;vHl

;Ag0 are vanishing, and the surviving terms in Eq.~A11!
give the heat mode for the elastic fluid.

For the sound mode (l5s56) in the elastick range we
have similarlyzH52 iscskl02O(k2), and the eigenvector
are those of the elastic fluid,

ws~k!5
1

cs
~1,b,scs!,

~A12!

vs~k!5
1

2cs
S cT

2 ,
d

4
b,scsD .

APPENDIX B: FOURIER TRANSFORMS

To calculate the tensor velocity correlation functio
Gab(r ,t) by Fourier inversion fromSab(k,t), we start from
Eqs. ~24!–~27!, and consider first theincompressiblelimit
whereSi(k,t)50, i.e.,

Gab
1 ~r ,t !5E dk

~2p!d
eik•r~dab2 k̂ak̂b!S'

1~k,t !. ~B1!

According to Eq.~25! Gab can be split into two scalar func
tions,Gi andG' , which will be expressed inS' . The sim-
plest functions to calculate are the trace and parallel par
Gab , i.e.,

Gpp
1 ~r ,t !

d21
5(

a

Gaa
1 ~r ,t !

d21
5E dk

~2p!d
eik•rS'

1~k,t !,

~B2!
Gi

1~r ,t !5 r̂ a r̂ bGab
1 ~r ,t !

5E dk

~2p!d
eik•r@12~ k̂• r̂ !2#S'

1~k,t !.

To carry out thed-dimensional angular integrations ford
>2 we express the infinitesimal solid angle as

dk̂5~sinu1!d22
•••~sinud22!du1•••dud22df, ~B3!

whereunP(0,p) are polar angles andfP(0,2p) is an azi-
muthal angle, and we note that the full solid angle isVd

5*d k̂52pd/2/G(d/2). Then we use the relation
rs

of

E dk̂

Vd
exp~ ik•r !5

E
0

p

du~sinu!d22 exp~ ikr cosu!

E
0

p

d u~sinu!d22

5S 2

kr D
d/221

G~d/2!Jd/221~kr !, ~B4!

where the integral representation~8.411.7! of Ref. @38# has
been used for the Bessel functionJn(z). Then Eqs.~B2!
become

Gpp
1 ~r ,t !5

d21

~2p!d/2r d/221E0

`

dk kd/2Jd/221~kr !S'
1~k,t !,

~B5!

Gi
1~r ,t !5

d21

~2pr !d/2E0

`

dk kd/221Jd/2~kr !S'
1~k,t !.

With the help of the recursion formula for Bessel function
zdJn(z)/d z1nJn(z)5zJn21(z), together with the genera
relation

G'
1~r ,t !5@Gpp

1 ~r ,t !2Gi
1~r ,t !#/~d21!, ~B6!

we obtainG'
1(r ,t) from Gi

1(r ,t), i.e.,

G'
1~r ,t !5Gi

1~r ,t !1S r

d21D ]

]r
Gi

1~r ,t !. ~B7!

In the general caseSi(k,t) is nonvanishing and we hav
from Eq.~24! an additional part, denoted byḠab(r ,t), com-
ing from k̂ak̂bSi(k,t). Here we have the relations

Ḡ'
1~r ,t !5E dk

~2p!d
eik•r

@12~ k̂• r̂ !2#Si
1~k,t !

d21
,

~B8!

Ḡpp
1 ~r ,t !5E dk

~2p!d
eik•rSi

1~k,t !.

The results for these functions can be read off directly fr
Eq. ~B2! and ~B5!. In this case the parallel part is obtaine
from Eq. ~B8! as

Ḡi
1~r ,t !5Ḡpp

1 ~r ,t !2~d21!Ḡ'
1~r ,t !5Ḡ'

1~r ,t !

1r
]

]r
Ḡ'

1~r ,t !. ~B9!

Fourier inversion of any of thescalar functionsSab(k,t)
with a,b5$n,T% is covered by the first line of Eqs.~B2! and
~B5!. We consider firstGi and G' in the incompressible
limit, whereS'(k,t) is given by Eq.~29!.

Inspection of Eq.~29! shows that the large-k limit of
S'(k,t) is S'

`5T(t)/r, leavingS'
1(k,t) as a remainder. This

may be written as

S'
1~k,t !5

T~ t !

r E
0

2g0t

ds8exp@~12k2j'
2 !s8#. ~B10!
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Using Eq.~B5! for the parallel velocity correlation function
Gi

1(r ,t) and Eq. ~B7! to determineG'
1(r ,t), we obtain

Gl
1(r ,t)5@T(t)/rj'

d #gl(x,s) for l5$i ,'% with s52g0t
andx5r /j' , which is valid in dimensionsd>2. Moreover,
gl(x,s) is given by

g'~x,s!5E
0

s

ds8
es82x2/4s8

~4ps8!d/2
2

gi~x,s!

d21
,

~B11!

gi~x,s!5
d21

2pd/2xdE0

s

ds8es8gS d

2
,

x2

4s8
D .
ys

ga

e

The Bessel transform Eq.~B5! of exp(2bk2) in Eq. ~B10!
has been calculated using Eq.~6.631.5! of Ref. @38#, where
g(a,z)5*0

z dt exp(2t)ta21 is the incomplete gamma func
tion. For d52 it reduces tog(1,z)512exp(2z) and for d
53 to g(3/2,z)5Apf(Az)/22Az exp(2z), wheref(z) is
the error function. We observe thatgi(x,s) is positivefor all
x,s. For large distance,x2@4s, the functionsgl(x,s) show
algebraic tails;1/xd. This can be seen by noting tha
g(a,x2/4s) approachesG(a), so thatgi.2(d21)g' and

gi~x,s!

d21
52g'~x' ,s!;S 1

VdxdD @es21#. ~B12!
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