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Cahn-Hilliard theory for unstable granular fluids
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A Cahn-Hilliard-type theory for hydrodynamic fluctuations is proposed that gives a quantitative description
of the slowly evolving spatial correlations and structures in density and flow fields in the early stages of
evolution of freely cooling granular fluids. Two mechanisms for pattern selection and structure formation are
identified: unstable modes leading to density clustefmgchanismlike spinodal decomposition, or “uplift-
ing” in structural geology, and selective noise reductiémechanismlike peneplanation in structural geojogy
leading to vortex patterns. As time increases, the structure factor for the density field develops a maximum,
which shifts to smaller wave numbers. This corresponds to an approximately diffusively growing length scale
for density clusters. Analytic expressions are derived for spatial correlation functions and structure factors that
agree well with molecular dynamics simulations of a fluid of inelastic hard disks.

PACS numbegps): 45.70.Qj, 47.20-k, 05.40:-a

[. INTRODUCTION elastic fluids is that granular fluids lose kinetic energy
through inelastic collisions and cool if energy is not supplied
Recently we have proposed a mesoscopic theory, basexternally. In a thermodynamic sense, granular fluids should
on fluctuating hydrodynamics with unstable mod&ahn-  be considered as “open” systems with an energy sink, cre-
Hilliard-type theory in order to calculate the structure fac- ated by the inelastic collisions. This collisional dissipation
tors and spatial correlations in driven and in freely coolingmechanism introduces several new time and length scales,
granular fluids. This theory permits quantitativecompari- ~ Which are often related to instabilities. In this paper we will
son with molecular dynamicgViD) simulations on fluids of ~focus on spatial correlation functions and structure factors,
inelastic hard spheres, over rather long-time intervals. Preand on the underlying instabilities in freely evolving un-
liminary accounts of the results were published in Rgf2]  driven granular fluids.
and documented in unpub"shed rep([ﬁg_] The basic goa| These instabilities have been studied by several authors
of this paper is to show how the theory of fluctuating hydro-Using macroscopic or kinetic equatiofi®-18. Goldhirsch
dynamics or Langevin fluidg5] can be used in the field of and Zanett{10] were the first to perform molecular dynam-
dissipative systems, such as granular fluids, to give detailei¢s (MD) simulations of an undriven two-dimension@Db)
theoretical predictions about the form of structure functionssystem of smooth inelastic hard disks and observed the spon-
about the nature of long- and short-range correlations, and t&neous formation of density clusters. The system is unstable
identify in granular fluids two different mechanisms for pat- against spatial density fluctuations, so inhomogeneities in the
tern formation: for density clusters an analog of spinodaldensity field (clusters slowly grow to macroscopic size.
decompositior{5] and for vortices an analog of peneplana- However, before this happens, the granular fluid, prepared in
tion as occurring in structural geolod$]. Fluctuating hy- @ spatially homogeneous state, remains in a spatilfyo-
drodynamics is one of the few available methods in statistigeneous cooling statéiCS) with a slowly decreasing tem-
cal mechanics to calculate spatial correlations, and it ierature. Gradually spatial inhomogeneities appear in the
totally complementary to Boltzmann- or Enskog-type kineticflow field (vortex patterns and only much later density clus-
equations, which are based on the fundamental assumptid@rs are being observed. In Fig. 1 we show typical snapshots
of molecular chaos, i.e., on the absence of spatial correl&?f the momentum field and the density field, as obtained in
tions.

driven or heated inelastic hard sphéhdS) fluid [7]. In that
system the spatial correlations are very long ranged’ ¢,
and are created by external noise that violates momentun_) 2
conservatiori8]. The same mechanism is creating the long- /K&\
ranged~r2~9 correlations between the height correlations in
the Edwards-Wilkinson model for surface growfi. In the ;
present model of the freely evolving IHS fluid the spatial i
correlations are much shorter ranged. For instance, in theﬁ;;
incompressible limithey are proportional te-r 9 [1]. So,
the external driving drastically changes the nature of the spa-
tial correlations. FIG. 1. Left: Velocity field afterr=280 collisions per particle.
The inelasticity of the collisions between grains makesThe density is then still nearly homogeneous. Right: Density field at
driven and undriven granular fluids behave very differentlyr=160. System of 50 000 inelastic hard disks at a packing fraction
from atomic or molecular fluids. A dramatic difference with ¢=37no?=0.4 anda=0.9.
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MD simulations of a system of inelastic hard digig. The 0 T r
flow field develops a large vorticity component and evolves

into a “dense fluid of closely packed vortex structures,”

which is still homogeneous on scales large compared to the -2
average vortex diametdr,, provided the system is suffi-
ciently large. More detailed information from MD simula-
tions on the late stages of evolution in clustering of granular
fluids has recently been given in R¢L8].

In order to understand and quantify the patterns of Fig. 1,
we study the time-dependent spatial correlation functions of -6 I SN
the corresponding fluctuations, using Landau and Lifshitz's TR~
theory of fluctuating hydrodynamid4.9], adapted to dissi- N T
pative hard sphere fluids, i.e., adapted to the presence of _ N . .
unstable modes. We present a theory that describes the
buildup of spatial correlations in the density and flow field in 0 50 100 150
the initial regime, where the inhomogeneities are governed T
by linear hydrodynamics, i.e., linearized around the homoge-
neous cooling statéHCS). To explain the theory we com-
pare a freely evolving granular fluid with spinodal decompo-
sition [5], where the observed phenomena aimilar in

In[E(t)/E(0)]
IS

FIG. 2. Kinetic energy per particl& versus number of colli-
sions per particle for ¢=0.4 anda=0.9. Initially E is equal to the
temperaturel, and follows Haff's homogeneous cooling la®).
The arrow indicates a crossover timg=67 from the homogeneous

Se\./rer:’al rte)SpeCt(Sj'. bili d th . f cooling state to the nonlinear clustering regime. Then spatial inho-
€ observed instability and the concomitant pattern Or'mogeneities become important and slow down the energy decay.

mation are explained by the Cahn-Hillia(@H) theory[5].  he gashed line represents Haff's 168y and the dashed-dotted line
Similar theories have also been used for two-dimensionahe resulit of Ref[17] for the long-time energy decay.

turbulence(see Frischi20] and references thergjrwhere the
behavior of the fluctuations in the flow field of incompress- o ] ] ) _ )
ible fluids has been described in terms of negative eddy visPredictions, including long-range  tails ~r In
cosities. Vorticity modes with negative effective viscositiesd-dimensional fluids in the incompressible limit, that for

have also been used by Rothman to study vortex formatiofearly elastic particles o(=0.9) agree well with two-
in lattice gas cellular automaf21]. dimensional MD simulations up to large distances. As the

The instability of undriven granular fluids alstiffersin  transverse velocity fluctuations of an incompressible fluid do
many details from spinodal decomposition. The former is anot couple to the density fluctuations in a linear theory, this
slow process, the latter $ast process. Consequently, the theory gives no information on the structure facg&pn(k,t)
Cahn-Hilliard theory in spinodal decomposition only de-for density fluctuations.
scribes the onset length and time scales of phase separation.The plan of the paper is as follows. In Sec. Il we briefly
As the formation of vortices and clusters in undriven granudiscuss the hydrodynamic equations, the decay of the total
lar fluids is a rather slow process, the present theory is exenergy, and the properties of unstable shear and heat modes
pected to give a good description up to times which arquith supporting technicalities in Appendix)Aln Sec. Il
rather large(see Figs. 1 and)2provided the inelasticity and e construct the theory of fluctuating hydrodynamics for
the density are not too large. , _granular fluids, and present the general method on how to
_ The most important function to describe the clusteringcaicyiate structure factors and spatial correlatiavith tech-
instability are structure factor§(k,t) in density and flow  pjcajities about Fourier and Bessel transformation in Appen-
field. Goldhirschet al.[11] have initiated the study of these dix B). Section IV focuses on the flow field, and identifies
structure factors, and related in a qualitative way the strucye formation of vortex patterns, as peneplanation, while Sec.
ture at smalk to the most unstable shear modes. They prev geals with analogous properties for the density field, and
sented a nonlinear analysis to explain the enslaving of dengengifies the density clustering as an analog of “spinodal
sity fluctuations by the vorticity flel_d. This analysis reveals decomposition” or “uplifting” to stay in a geological termi-
that the length scale associated with the late stages of nopy|ogy. Both sections derive simple analytic approximations

linear clustering is of the ordef;, ~1/\vo, Wherelg is the  for structure factors and correlations valid for long times. We
mean free path. Bregt al. have also studied the nonlinear end with some conclusions in Sec. VI.

response of the density field to an initially exciteanode in
the transverse flow fielf22].

d

A firs.t step in the theoretical u_nderstanding (K, 1) Il. HYDRODYNAMICS
for density fluctuations has been given by Deltour and Barrat
[15]. These authors have shown how trewth rateof Sin The macroscopic hydrodynamic equations for inelastic

the linear regime is determined by the most unstable longhard sphergIHS) fluids are necessary to set the stage for

wavelength part of the heat mode, in which the densitydescribing fluctuations by Langevin-type equations. We as-

couples to longitudinal velocity perturbations. sume that IHS hydrodynamics for weakly inelastic systems
In two preliminary publication$1,2] we have only con- can be described by the standard hydrodynamic conservation

sidered long-range correlations in the flow field to illustrateequations supplemented by a sink tdrnin the temperature

the results of fluctuating hydrodynamics. This theory yieldsbalance equatiof23],



PRE 61 CAHN-HILLIARD THEORY FOR UNSTABLE GRANULAR FLUIDS 1767

a4n+V-(nu)=0, external time,7=t/ty, measured in units of the mean free
time to=1/w(T,) at the initial temperature. The initial slope
1 of 7(t) corresponds to the collision frequeneyT,) in the
du+u-Vu=——-V.II (1) equilibrium state atr=0. A combination of these results
p yields the slow decay of the temperature,

&tT+u~VT=—%(V-J+H:Vu)—F. T(=To exp—2%01) =To/(1+ %t/to)*, (2
as first derived by Haff23]. The relation introduces a new
Moreover,p=mnis the mass density, the flow velocity, — intermediate (mesoscopic time scale, the homogeneous
and 3dnT the kinetic energy density in the local rest frame cooling timet.=tq/ .
of the IHS fluid andd the number of dimensions. The pres-  For small inelasticity and a wide range of densities the
sure tensofl,,z;=pé,z+ 6114 contains the local pressupe vali_d_ity of Haff's !aw and the existence of the HCS has been
and the dissipative momentum flél1,,z, which is propor- verified by MD S|mulation{10—15,1_8. The.relation for the
tional to V,,u, and contains the kinematic and longitudinal temperature or energy decay remains valid until a crossover
viscositiesr and »,. The constitutive relation for the heat time 7 (defined in Fig. 2 to a diffusive regime, where the
flux, J= — kVT, defines the heat conductivity. The quan- System remains spatially homogeneous, but where velocity
tity T is the average rate of energy loss through collisionafluctuations drive the system away from the HCS, and the
dissipation, which distinguishes Eql) from those of an decay of the total energy slows down 6% [17]. For still
elastic fluid. The above equations can be justified to lowestarger times and/or larger inelasticities different forms of al-
order in the inelasticit§24,25], and will be used foweakly ~ gebraic energy decay, like~t~%? [29] and E~t~2¥14*?]
inelastic systems, where thermodynamic and transport propk30] have been proposed. The HCS solution becomes lin-
erties are assumed to be given by those of elastic hard spheg@rly unstable as soon as the lengtbf the system exceeds
fluids (see Appendix A some dynamic correlation lengthly/\yo [10-15, where
The energy balance equation for theatedfluid in Ref. | is the (time-independentmean free path. It is given by
[7], as opposed to the freely evolving fluid discussed herelg=vq/w, wherevy(t)= y2T(t)/m is the thermal velocity.
contains apart from the energy sinkI', also an energy In general the HCS is highly nontrivial, as it exhibits cor-
source term. It is, howevenot this inconspicuous mean en- relations between the velocities and positions of different
ergy source in the macroscopic energy balance that is reparticles. In the “lowest order” descriptiofior more refined
sponsible for the large difference in spatial correlations beapproximations se€26,27,31,32) the HCS corresponds to
tween driven and undriven granular fluids, but the noisean equilibrium state, which is cooling adiabatically, i.e., with
characteristics of the energy source. a time-dependent temperatu®. Here velocity correlations
Kinetic theory provides an exact expression for the colli-between different particles are absent, and position correla-
sional dissipation raté'. It can be derived from the micro- tions are taken only into account through the pair correlation
scopic energy loss per collision. An explicit derivation canfunction at contact.
be found in Refs[26,27]. For the present purpose, however, In the present paper we are interested in the buildup of
a phenomenological derivation suffices, which proceeds asorrelations between spatial fluctuations in a system that is
follows. On average, a particle loses per collision an amounprepared in a homogeneous state at an initial temperaigure
~ T of its kinetic energy, and per unit time an amount It reaches the HCS within a few mean free tintgsThere-
~yo0T, Wwherey,=(1— a?)/2d is the degree of inelasticity. fore, we can linearize Eq§l) around the homogeneous den-
It is determined by the coefficient of normal restitution, sity n and temperatur@(t)=Ty/[ 1+ yot/ty]%, and the van-
which defines the inelastic hard sphere collisip®3]. Here  ishing flow field of the slowly evolving HCS. The resulting
w is the average collision frequenfg8], given by Enskog’s set of linearized hydrodynamic equations, given in &)
theory for dense hard sphere fluid8], and quoted in Ap- of Appendix A, contains the Enskog hard sphere transport
pendix A. It is proportional toyT. This argument gives coefficients,v, v, andx, which are proportional tg/T(t),
(apart from a numerical factpl’=2y,wT. and depend therefore explicitly on time. It is again conve-
For an understanding of what follows two properties ofnient to make the transformationre: w dt, and introduce
undriven granular fluids are importarit) the existence of a the rescaled variables sn(r,7)=aon(r,t)/n, u(r,7)
homogeneous oooling sta(ﬂdCS) and(ii) its linear i.nstabil-_ =u(r,t)/ve(t), and 8T(r,7) =6T(r,t)/T(t). In these vari-
ity against spatial fluctuations. The hydrodynamic equationspas the equations of change for the macroscopic Fourier

for an IHS fluid, initialized in a homogeneous state with ~ ~ ~ )
temperatureT,, admit a HCS solution with a homogeneous modes on(k,7), u(k,7), and 8T(k,7), defined through

densityn, a vanishing flow field, and a homogeneous tem-6a(k,7)=/dr exp(=ik-r) a(r,7), become ordinary differ-
peratureT(t), determined by, T=—T. To solve this equa- ential equations wittime-independertoefficients. In matrix
tion it is convenient to change to a new time variable, defepresentation we write the above equations as

fined asd7= w(T(t))dt, yielding T(t)=T, exp(—2yy7). TO

find the relation between the “inte_rn_al” time, which mea- _ i&ﬁ(k,r)= M(k)5€1(k,7'), 3)
sures the average number of collisions suffered per particle ar

within a timet, and the “external” timet, we integrate the B

relation for d= using w~ T, with the resulty,7=In[1  where components & andM are labeled with{n,T,I, L},
+y0t/to]. In the elastic limit ¢,—0), it is proportional to the and are explicitly given in Appendix A. The subscriptin
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FIG. 3. Growth rateg, /vy, for shear { =L1), heat A =H), and ) ) ) ] o
sound ¢ = =) modes(nonpropagating foko< ;) versusko for _FIG. 4. Ratiog /¢, versus packing fractiog of inelastic disks,
inelastic hard disks withv=0.9 at a packing fractionp=0.4(,  With definitions of¢’s in Egs.(A3) and(A4).
=0.340). The shear and heat mode are unstablekfak? andk

<ki, respectively. pendix A. The shear mode imstablefor k<k¥ =1/¢, .

. - o There is another unstable mode, referred to as “heat
the equation fou, refers to any of thel—1 directions per-  oge  that is essential for explaining the formation of vor-
pendicular tok, and the subscridtdenotes the longitudinal tices and density clusters. The corresponding eigenvalue
direction alongk. The validity of the hydrodynamic Eq€3)  (, (k), the root of a cubic equation, is shown in Fig. 3. It is

is restricted to wave numbeks<2/l, to guarantesepara- | nstable forz,>0, i.e., fork<k? , with k¥ calculated in Eq.
tion of kinetic and hydrodynamic scales, andke&2 /o, ([A7). It has simple limiting behavior

whereo is the diameter of a disk or sphere, to guarantee tha
the Euler equations involve only local hydrodynamics. Al-

ready at moderate packing fractions of about 20% the mean K) = vo( 1 — k2&2 Kl <

free path for hard disks is less than one diameter, and the En(k)=o( &) (Klo<o)

system starts to show nonlocal effects in the thermodynamics =yo(Lo—k?&%) (Kl o), (4)
and transport properties for wavelengihssatisfyingl o<\

<g0.

. Necessary ing_redieqts in our subsequent analysis are the derived later in Eq$A7) and(A10), and shown in Fig. 3,
eigenvalues or dispersion relatiofig k) and corresponding  respectively, as a dashed and a dotted line. In the dissipative
eigenvectors oM, which are given in Appendix A. Disper- yange the eigenmode is a purely longitudinal velocity fluc-
sion relationsg, (k) for the IHS fluid have been calculated, y,ation. In the elastic range aroukf] (kx\y,) the eigen-
for instance, in Ref[15]. Typical results of our calculations mode is to dominant order i, the heat mode of an elastic
are shown in Fig. 3. The most striking feature is that therg, 4 sphere fluid. Furthermore, we point out thiatand &,
are two eigenvalueg, and{y, that arepositivefor k below diverges as 1\/7—0 for small o, while £~ 1/7,. As a conse-

o * * :
the stabll_lty threshold_kL andk,, i.e., two Il.ne.arly.unstable quence the correlation lengtfs and £, are well separated
modes with exponential growth rates. In issipativerange & for small inelasticity, as shown in Fig. 4. The sound

[12] (klg<<y,) all eigenvalues are real; propagating modes.,odes will not be needed.
are absent. Arounklo~0O(yo), two eigenvalues become e also observe that the instability of the shear and heat
complex conjugates and the correspondisgund modes  o4es is a long-wavelength instability. As a consequence
become propagating, with(eescaled propagation speeck,  effects of the boundaries are important for finite systems, and
which equals the adiabatic sound speed in elastic hard sphefigs yarious instabilities are suppressed in small systems.
fluid, to lowest order inyo. In the'n0fma| 2rglastlc rangé  \when using periodic boundary conditions, the instabilities
(klo\%), heat conduction, which i©(k’lg), becomes ¢ suppressed K,=27/L is larger thark® or k. When
dominant wheny, is assumed to be sufficiently small so that decreasing the system length=V'¢ at fixed inelasticity,
Yo< V7o In the latter range, the dispe_rsion_ relations andgrst the heat mode will becomstable (k% < Kpin<k*). In
eigenmodes resemble those of an elastic fluid. this range the densiticoupled to the heat moylés linearly

The most simple modes are thd~1)-fold degenerate giaple, and density inhomogeneities can only be created via a
transverse velocity or shear modes, which are decouplefonlinear coupling to the unstable shear m¢ti@,27. De-
from the remaining modes, and given by, (k,7)  creasing the system size even furthef €Ky, will stabi-
=u, (k,0)exg, (K 7], where ¢, (k)= yo(l—k2§f). We lize the shear mode and thus the HCS itself. In Sec. Il we
point out for later reference that all correlation lengths present a mesoscopic theory to describe the dynamics of the
used in this paper are defined in E¢a3) and(A4) of Ap-  long-wavelength fluctuations in the system.
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Ill. MESOSCOPIC HYDRODYNAMICS where the total coefficient in front af is a traceless isotropic
tensor of rank 4. For dimensional reasons, the transport co-
_ _ efficients in systems with hard sphere type interactions, like
In this section we construct the general theory of fluctu-|Hs, are proportional ta/T(t).
ating hydrodynamics for granular fluids, and point out the |n the present theory for nearly elastic fluids we linearize
differences between the applications of this theory to freelthe nonlinear Langevin equations, obtained from EX),
evolving and to randomly driven systems. The quantities tqaround the HCS. By applying the transformations introduced
be calculated are the equal-time spatial correlation functiongpove Eqs(3) we obtain the dynamic equations for the res-
of the fluctuating hydrodynamic fieldssa(r,t)=a(r,t)  caled variables, in the standard form of a set of Langevin

—(a), 'where a,b={n,T,u,} with a=x,y,... denoting equations with constant coefficients,
Cartesian components,

A. Langevin equations

Jd ~ ~ o
Gab(r,t)=V’1Jdr’(5a(r+r’,t)5b(r’,t)>. (5 a7 Satk. ) =Ml dak, )+ Tk, ), ®

where the hydrodynamic matriv (k) represents the deter-

Shinistic part of the Langevin equation, afidepresents the

rescaled internal fluctuations in the momentum and heat flux,

which are characterized as Gaussian white noise by(&qg.
The equation of motion for the matrix of rescaled struc-

S k,tzfdrex —ik-r)G(r,t ~ ~ ~
(k1) X JGas(rt) ture factors,S,p(k,7) =V~ X sa(k,7) sb(—k,7)), can now
:V‘l(aa(k,t)ab(—k,t», 6) be derived from Eq(8), and yields

The structure factors are the corresponding Fourier tran
forms,

where da(k,t) is the Fourier transform oba(r,t), andV o5k, )
=L%is the volume of the system. We study the spatial fluc- a7
tuationsda(r,t) of the hydrodynamic fields around a refer- T . .
ence state, which leads to a Cahn-Hilliard-type théeiyfor ~ WhereM ' is the transpose d¥l. It is to be solved for given
the structure factors. The dynamics of these fluctuations cakitial valuesS(k,0), referring to the state in which the sys-
be described by the fluctuating hydrodynamic equatja®s  tem has been prepared at the initial stiated.

obtained from the macroscopic hydrodynamic equati@s In terms of the rescaled variables the Gaussian white
by adding noise sources to the momentum and energy banoise (7) has the standard from witbonstantcoefficients,

ance equations. The noise sources are denotdd-iy and ~ 9iven by the covariance matrig(k), with
v-J, respectively, which conserve momentum and energy.

The currentsiT and J are considered as Gaussian white

noise, local in space, and their correlatio_ns are c_iete_rmined bY is diagonal with nonvanishing elements

some appropriately formulated fluctuation-dissipation theo-

rem for the reference state. CTT=8Kk2/d2n2w=4yok2§$/dn,
In elastic fluids the reference state would be the thermal

equilibrium state. In driven systems it would be a nonequi-

librium steady stateNESS. In the present case the reference

state is the slowly evolving homogeneous cooling state. The ) .2

same reference state has been used by Goldhirsch and one of Cii=vkno=yk*&i/n,

the authorg3,32] to derive Green-Kubo formulas for trans- )

port coefficients in the undriven IHS fluid. In the lowest Where the elementsT(T),(Il), and (L) follow directly

approximation27] it may be considered as an adiabaticallyfrom Egs.(7) and the definitions 9f the co[relanon lengths in

changing equilibrium state with a constant density, a vanishEgs. (A3) by considering ikJ,, 2ikll,/pw , and

ing flow field, and a time-dependent temperature, describedikI,, /pw, respectively, and using the relatiod(r)

by Haff's law (2). The basic extension required for applica- = 5(t)/w(T(t)).

tion to IHS fluids is the assumption that the fluctuation-  Here it is of interest to point out that the internal Langevin

dissipation Fheorem also applies t_o the HCS W'th an ad'abat'ﬁoise,ik- II andik-J, in the undriven IHS fluidconserves

cally changing temperatuE(t). This assumption relates the gnergy and momentum. This is the essential difference with

noise strengths to the transport coefficients throjigh the randomly driven IHS fluid of Ref7], where the external
noise doesnot conserve momentum and energy, i.e., the

=M(k)-S(k,7)+S(k,7)-MT(—=k)+C(k), (9)

VL a(k, D) To(—k, 7)) =Cap(k)8(7— 7). (10)

Ci = KInw=yk?&n, (12)

(T g(r DT (1" 1)) =2pT[ ¥( 80y 055+ SusSsy) noise sources are not proportional koat smallk. Conse-
quently, the noise strengths correspondingCtare missing
H(1=20)8,56,5]16(r—1") 6 the factorsk? in Egs.(11), which in turn lead to much longer
X (t—t)], spatial correlations. For a more extensive discussion on the

7) difference between Langevin noise that does or does not con-
R . serve the macroscopic conservation laws we refer to Grin-
(Ja(r,0)Ip(r' 1))y =2kT?8,58(r—r")8(t—t), steinet al. [8].
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The formal solution of Eq(9) for the matrix of rescaled J _ ~
structure factors is then E_SJr(k, 7)=M(k)-S"(k,7)+S"(k,7)-MT(—k)+B(k).
~ ~ (16)
Sk, 7)=exgM (k) 7]-S(k,0)-exdMT(—k)7]
i After some rearrangements the source term is found as
+f dr’ exgdM(k)7']-C(k)-exdMT(—k)7']. B B

0 B(k)=[M(k)—E(k)]-S(k,0)+3S(k,0)

12 X[MT(~k)~ET(k)]. (17)

At the initial time (r=0) the system is prepared in a thermal
equilibrium state of elastic hard spheres with densitgnd
temperatureT,. Consequently, all elements &(k,0) are B =Br=—v.a&. (kO
known. Moreover, the evolution equatiof®) and (3) are n7=Brn= = 703Sn(k0),
only valid fork<{2/l,,27/ o'}. So the initial value$(k,0)
are only needed foko<27, where they are given by their
limiting values ask— 0. [Note thatk should not be set equal
to 0, becausesn(0,t) =0 when the total number of particles
is fixed] The nonvanishingS,,(k,0) with a,b={n,T,I,1}
are given by the equipartition values for elastic hard sphere
fluids in thermal equilibrium,

Its nonvanishing matrix elements are

Brr=—27,5r1(k,0),
B (18)
Bi=2v0Si(k,0),
B, ,= 270§L¢(k10).

wherea is defined in Eqs(A5). The formal solution of Eq.

,(k,0) = (T/n) (anlap)=1[2nc2] (16) with the initial valueS*(k,0)=0 becomes
n ’ - ’
"S'_I_T(k’O)ZZ/[dn]’ (13) §+(kl7—):fo dT/eM(k)T’_B(k).eMT(_k)T/. (19)
S1(k,0=5,, (k,0=1/2n], The spectral decompositidA6) of M allows us to write the

) o ) ) ) components,b={n,T,l,L} of Eq. (19) as
where the first relation is the Ornstein-Zernike relation for

density fluctuations. _ exd (L +¢,)r]—1
Sa(k,1)=2 Bgmk)( -2 . (20
. A g)\ + g,u
B. Spectral analysis

To gain insight in the mechanisms that developed strucwhereX, u label the hydrodynamic modes and
ture and correlations over distances much larger than the \
particle diameterr, a spectral analysis is required. Numeri- B3t (K) =Wy a(K)W ,p(— K)(Vy (K)[B(K) [V, (—K)),
cal solutions, which will be discussed in a later subsection, (21

do not provide much insight, but are only needed for a de- . .
tailed quantitative comparison of the present theory with MDWNET€Vaa andv ,, are contracted witl,,. Once the eigen-

simulations. For a theoretical analysis it is more convenienY@/Ues¢,(K) and eigenvectors, ,w, are known, the struc-
to study the deviations from the initial values in thermal "€ factors can be calculated. The res(@g) contain expo-

equilibrium, defined as the excess structure factor nentially growing factors describing the unstable modes with
' ' £,>0, as in the Cahn-HilliardCH) theory for spinodal de-

3t (k,7) =5k, 7)— 3(k,0). (14) cpmpqsition. The p.resent theory includes in B}._Lange-
vin noise terms, which guarantee that the fluctuations at large

. ~ : = k reach their thermal equipartition values, as the collisional
The reason is thafi(k, 7) at fixed 7 approaches(k,0) when dissipation can be neglected at lalgédt is equivalent to the

kincreases. Consequently; (k,7) is only sizable for small  capn-Hilliard-Cook theory5]. If the Langevin noise is ne-

k, and therefore more suitable for perturbative treatment Co=s . .
based on hydrodynamics. This can be understood by inspe%;f%)encsteoc:c ?Kesne(;[it;%g%;otégfgl' (12), we obtain the predic-

tion of the hydrodynamic matriM (k) for the IHS fluid,
given in Appendix A. Forklo> 1y, all terms of O(y,) can
be neglected, and the hydrodynamic matrix reduces to the
elastic oneE(k), and Eq.(9) reduces to

Sk, 7)=exgdM(k)7]-S(k,0)- exdMT(—k) 7], (22)
or in component form

E(k)-S(k,0)+S(k,0)-ET(—k)+C(k)=0, (15

San(k, 1) =2 Sif(Kexd(H+4)7, (23
as can be verified using Eqsll) and (13). The relation A
above is in fact equivalent to the fluctuation-dissipation theo- - . . o~
rem (7) for elastic hard spheres in rescaled units. whereS;¢ (k) is defined by Eq(21) with B(k) replaced by

Subtracting this equation from E) yields S(k,0).
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The explicit solutions can be studied using the eigenval-

ues and eigenfunctions in different ranges of wave numbers. G(r,t)zS”“é(r)+f
For the very long wavelengths in the dissipative rankky (

<) this can be done bk expansion at fixedy,. The o - _
elastic or normal rangek({y \/yo) is accessible to analysis Note that the limiting values,,,, when expressed in terms
by rescaling the wavelengths &s= \/Y—oq, consideringgq of the rescaled varlables,~are given by tiree and (wave
=((1), andtaking the smally, limit subsequently, as dis- numbej independent valueS,,(k,0) in Eq.(13). This is the
cussed in Appendix A. reason for using the same notation as in E). In the

sequel it is convenient to also use the notation,

dk
) explik-r)S*(k,t). (26

)9

C. Structure and correlations

G™(r,t)=G(r,t) = S*(1) &(r), (27)
Suppose we have calculated the structure factors, what
information can we extract from them? An elastic fluid in whereG™ represents the correlation function on scales larger

thermal equilibrium does not show any structuretymiro-  than a diameter. The structure fact@$(k,7) in Eq. (19)
dynamiclength spales K=min{11o,1/c}). This means that .o pe Fourier inverted. However, the functid®,7) in
the hydrodynamic structure facto,,(k) are totally flat, Eq. (14) contain a parB(k,0), which isindependenbf k in

independent ok, as can be seen in E@.3). The correspond- . . . o0

. . . . the relevank interval, and which yields after Fourier inver-
ing hydrodynamic correlation functions are short ranged,Sion a contribution proportional ¥6(r). These “largek”
Gap(r,t) ~4(r), on these length scales. Development Ofcsontributions are in fact the correlation functions of an elas-
structure on length scales above the microscopic scaletIC hard spherdEHS) fluid ask -0, i.e

{lg,o} will manifest itself in the appearance of one or more P T

maxima or peaks in the structure factorslikear instability

will manifest itself in a structure factor that grows exponen- Gn(r,t) = Lg(r)'
tially in time. With these concepts in mind, we analyze the " 2¢2
structure factors in Eq20) for the IHS fluid, as we want to
determine which physical excitations are responsible for the 2T2(t)
features observed in the MD simulations and in the numeri- Grilr,)=—4, (), (28)
cal solutions.
Once the structure factors have been obtained, the corre- T(t)
lation functions can be calculated by Fourier inversion. Gap(r)=——5(r)0,p.
Whena andb refer ton and T the components o6,,,(k,t) mn
and G,p(r,t) are scalar isotropic functions only depending , . .,
on |k| and |r|, respectively. Whend,b)=(a,B) refer to According to Sec. I, “largek” means here\/yo/lo<k

Cartesian components, of the flow field, therS,z(k,t) is a <mini2alo 2m/ o}. HereGy, is the coarse-grained density-
second rank isotropic tensor field, which can be separate@€Nnsity correlation function for EHS, in which the Fourier
into two independent isotropic scalar functions: components witlkko =27 have been discarded. In Appendix

B we derive the formulas, necessary for the analytic and
S,k )=k k Si(k,t)+(8 —k,kz)S, (k,t), (24 numerical Fourier inversion o8*(k,t), as defined in Eq.
R L wp Tanh (26). After these preparations we analyze the numerical so-

whereS(k,t) andS, (k,t) are given by Eq(6) with 5a and lutions.
6b equal tou; andu, , respectively. A similar separation

applies to the spatial correlation functions, D. Numerical solutions
The numerical evaluation of structure factors in E42)
G (r)=V- 1S expik-r)S, 4kt and (22 vy|th or without Langevin noise have been per-
a1 Ek: 3 JSapkt formed usinguATHEMATICA . The values ofS,y(k,t) “with

o o noise” are plotted as solid lines in Figs. 5, 6, and 7 for
=Tl gG(r, 1)+ (Sap—Tal p)GL(r,). (25  different componentsab); those “without noise” as dashed
lines.
Here the scalar function§(r,t) and G, (r,t) refer to the The qualitative features of the noisy and noiseless theory
tensor components @ ,4(r,t), which are, respectively, par- (solid and dashed lines in the figuyese about the same for
allel and perpendicular to the relative positiariThey do not  smallk values kly<vyg) as shown forS,, in Fig. 5a) and
represent the inverse transforms of the scalar functionfor §=S, in Fig. 6@). However, the predictions differ sub-
Si(k,t) andS, (k,t). Firstly we note that the Fourier series in stantially at largek values, where the results of the noiseless
Eqg. (25 can be replaced by a Fourier integral, provided thatheory do not approach the plateau val@és,0), but vanish.
the system is sufficiently large. Then, for periodic boundaryThe reason for this incorrect prediction has been explained
conditions, as used in MD simulation¥, 1=, can be re- above(22).
placed by (2r) ~9fdk. For the transverse structure factdr [upper solid and
Secondly, the inverse Fourier transfofar,t) of S(k,t) dashed lines in Fig.(®)] the noisy and noiseless theory are
only exists as alassical functionif S*(t)=lim _ .. S(k,t) quantitatively different except in the limk—0. In general,
vanishes. If S(k,t) approaches a nonvanishing constantin the long-wavelength and large time limit the results of
S*(t), it yields adistribution 5(r). So, both theories approach each other.
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0.8 ' ; 2

(b)

FIG. 5. Density structure factd®,,, in units 162, versusko () ko
for $=0.4 and«¢=0.9, at =10, 20, 30, and 40 collisions per
particle, exhibits the clustering instability with a growing maximum  FIG. 6. Structure factors of velocity fluctuatioSs andS, , in
at Kya(t), which shifts to the left whenr increases. Solid and units Too?/m, versusko for ¢=0.4 anda=0.9 illustrate the phe-
dashed lines are the numerical solutions of E§8) and(22) with nomenon of noise reduction at small wavelengths. The initial value
and without Langevin noise, respectively. They differ appreciably,S (k,0)=S, (k,0)=T,/p is a horizontal line, tangent to the maxi-
except at smak. The simple analytic approximatig87), shownin  mum atk=0. Top panela) plotsS; at =10, 20, 30 and 4Qines
(a) as dashed-dotted lines far=30 and 40, gives a good descrip- labeled from top to bottomwhere solid lines represent the numeri-
tion in the long-time and long-wavelength lim{b) Numerical so-  cal solution of Eq.(12), and the dashed-dotted lines represent the
lution of Eq.(12) compared with MD simulation resul{gourtesy  approximate analytic resu(B81), which is only valid for7>1/y,
of J.A.G. Orzaet al. [4]). =21. The dashed line represents the numerical solution of the
“noiseless” Cahn-Hilliard theory(22) at 7=10, which deviates
dsubstantially from the solid line at=10, except neak=0. (b)
Comparison with MD simulation resuligourtesy of J.A.G. Orza
et al.[4]) at 7=20 for S, (squaresandS; (circles.

To understand the totally different behavior of density an
velocity fluctuations, we consider the solid lines in Fig@)5

and Qa), 6(b) for S, (k,t)=n%S,,(k,t) and S,(k,t)

=va(t)Sa(k,t) with a=(L,[), where 3mv3(t)=T(t)  We return to the density instability in Sec. VA.

=Tgexd —2y7]. Their square roots give the actual size of Next we consider the velocity fluctuatiorg(k,t) with

the fluctuations in the density and flow fields. The densitya=(L,|), which are for allr,k smaller than the initial value
fluctuations for largek remain at the constant thermal noise S,(k,0)=T,/p [see Figs. @) and Gb)]. Consequently, the
level. However, at small wave vectors the density fluctuafluctuations in the flow field do not grow, but are at all times
tions are unstable and increase in size. The maximu8yin stable and bounded by the noise level in the initial equilib-
at kmax(t)=2m/L(t) sharpens up and shifts to smaller rium state. The plateau valtgt)/p at fixed largek values
wave vectors, wherk(t)~ /7 for the full range ofr val-  decreases in time with the cooling temperature. In Sec. IV A
ues, as determined numerically. So, the present theory preve return to the mechanism responsible for the growing vor-
dicts a growing length scale(t) of density clusters in tices, shown in Fig. @). It is also of interest to observe that
undriven IHS fluids in the early stages of cluster formation.the locations of the maxima &, in Fig. 5 and those of the
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6 . the collisional dissipation and lowers the temperature. This
mechanism is in fact at the basis of the “phase separation”
of the homogeneous granular fluid into cold dense clusters
surrounded by a hot dilute granular gas. We have also cal-

4t ) culated the nonvanishing crosscorrelatiofs and Sy,

which are purely imaginary for symmetry reasons.

An illustration of the comparison with the MD simula-
tions on systems of 50000 inelastic hard disks of Refs.
[1,2,4] is shown in Fig. ®b) for S,, and in Fig. §b) for S,
2t andS;. The agreement between theory and simulations is in
general very good, even for rather large inelasticities (
=0.6). By comparing the simulation results 8y andS; in
Fig. 6(b) with the numerical results of the theory with noise
(solid lineg and without(dashed lines we have observed

0.2

ko

that the agreement in the “noisy” case extends over the full
range ofk values, whereas in the “noiseless” case it is re-
stricted to the smalk range, which is indeed very small for

the transverse structure factsy (k,t). Similar conclusions
0 , hold when comparing the simulation results ®y,(k,t) in
Fig. 5b) with the numerical results in Fig.(8& with and
without Langevin noise included. Consequently the noiseless
Cahn-Hilliard theory does not agree quantitatively with the
simulation results.

So far we have established by a rather complex numerical
procedure that the Langevin equations for granular fluids
give predictions that agree quantitatively with MD simula-
tions. Our next goal is to understand theoretically which ex-
=2t | citations are responsible for the observed behavior. This will
be done in Secs. IV and V.

IV. FLOW FIELD PROPERTIES

-3 : s A. Transverse and longitudinal structure factors

0.0 0.2 0.4
(b) ko

We first consider the simplest case of the transverse struc-
ture factorS, (k,t)=v3(t)S, (k,7) with (ab)=(LL). It de-
scribes the transverse velocity or vorticity fluctuations

FIG. 7. Rescaled structure factof@ Srr and (b) Syr, allin 'y, (k,7), which are decoupled from the remaining Fourier
units o2, versusko for same the parameters as used in Fig. 5. Themodes, and satisfy a one-component Langevin equation,
structure factor in(b) vanishes initially and develops structure as \yhere the matrixM (k) in Eq. (8) reduces to a single number
time increasesS;; develops structure on top of its initigblateay £ (K)=7yo(1— gf k?). The complete structure factor is
value Syr(k,0)=2/dn=1.96. readily found from Eqs(20), (14), and(15), and yieldg1]

minima (“dip” ) of S, in Fig. 6 approximately coincide. It T(t) exr[Zyo(l—gsz)q-]—l
indicates that the density instability is closely connected to S (kt)= 1+ 7.2
the dynamics controllings;, which turns out to be the heat p 1-¢7k
mode, as we will show in the next section.
The numerical values of rescaled temperature fluctuation¥his expression is plotted as the uppgetid line in Fig. 6b).

S+ and crosscorrelatio, are shown in Figs. (& and It does not grow, guzt slowlyzd;acays at largeas S, (k,t)
7(b). We first observe thab;r and S, show roughly the = (To/p)exp(=2%& K 7)/(1-£ k), the faster the largek.
LR . . At the largest wavelengthséfk?<1) it simply represents
same behavior aS,,, (except at smalk) with a maximum, ticit dgff . thg “int g pyl P ith
that shifts towards smallée with increasing time. This sug- VOrtcity difiusion on the minternal” time scaler, with a

gests that the dynamics font),(TT), and () fluctuations difquivity yogff vl w. Therefore, the typical length scgle of
is controlled by the same mode, as will be shown in SecVortices grows likeL(t) ~2m&, V2yor~2m\v7/w, which

VA. An interesting feature, shown b, is that density is independent Of. the degree of |nelast_|C|ty_.

and temperature fluctuations in granular fluids are anticorre- Next, we F:on5|der the rescaled longitudinal sttructure fac-
lated at all wavelengths. This property was also noted byor S(k.t) with (ab)=(Il), where the most dominant term
McNamara[12] in his analysis of the macroscopic hydrody- for large in (20) is (A ) = (HH), as can be seen from Fig.
namic modes of granular fluids, and is intuitively clear. 3. There is no coupling to ths shear modes. This leads in the
When a random fluctuation creates locally an excess densitgfructure factorS(k,t) :vg(t)q(k,q-) to a slowly decaying

the collision rate,w>n, increases locally, which enhances contribution with an overall decay rate proportional k&

(29
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All remaining contributions decay faster; at least as fast awith a ratey,£2k?. So, noise reduction is the pattern selec-
Vo(t) ~exp(—yy7), providedr> 1/y,. The slowest decay oc- tion mechanism, responsible for the growing vortex struc-
curs at very long wavelengths, i.e., in tdessipativerange  tures observed in Fig. 1. The mechanism for pattern forma-
(klg<<1yp). To calculate the dominantH{H) contribution to  tion that creates the peaks $ (K,t) andSy(k,t) atk=0 in

Eq. (20) we need the coefficier || (k). It follows for small  reciprocal space is, in fact, very similar to the process of
k from Egs.(21), (18), and(A8), and is given by peneplanationn structural geology6] for peak formation in

real space, where the earth surface around the peak is gradu-
ally being removed by selective erosion. The formation of
Mount Uluru (Ayers RocK in the center of Australia is an
outstanding example of peneplanation.

BIM(0=2768 (kO =7 (30

Inserting these data in E§20) and combining it with Eq.
(14) yields forklo<yo and yo7>1, B. Correlations in incompressible flows

T(t) ex 2yo(1- £fk?) 7] -1 There is an interesting limiting case of the theory, the
Sk =1 25 , (31 incompressible limif1], that greatly simplifies and eluci-

1-¢k dates the analytic solution of the full set of coupled linear-

ized equationg8) for hydrodynamic fluctuations. It is well
known from fluid dynamics and the theory of turbulence
[33,2(Q that ordinary elastic fluid flows are quite incompress-
ible. This implies thatV-u=0 and as a consequence the
longitudinal modeu,(k,t)=0. Then, the nonlinear Eq1)
for the transverse flow field or, equivalently, for the vorticity,
practically decouples from the remaining hydrodynamic
equations. In the comoving reference frame there is only a
nonlinear coupling of the temperature fluctuations to the
transverse flow field through the nonlinear viscous heating,
7|Vu|?. We therefore expect that the IHS fluid in the nearly
elastic case can be considered as incompressible, at least to
lowest approximation.

where the dispersion relatiafy (k) = yo(1— £fk?) has been
used. Note that the analytidHH) approximation is only
valid for yo7>1, whereas the numerical result is valid for all
vo7. Thislong-wavelength and long-time approximation for
S| has the same form as the exact res@l) with £, re-
placed by. In Fig. 6@ we compare the resu(B1) (dot-
dashed lingswith the numerical solutiorisolid lineg, pre-
sented in Sec. Il A. It is straightforward to also obtain an
analytic approximation, which applies in the elasticange,
whereklyo \/yo. However, we do not show this result as the
extrapolation of the simple smdtl-approximation(31) cap-
tures foryy7>1 the global features at smallas well as the
plateau values at largérquantitatively. It misses, however,  \yhat are the consequences of this assumption? The struc-
the little dip at intermediaté-values(see, however, Sec.)V e factors, (k,t) of density fluctuations does not evolve in

The behavior of the longitudinal structure factor on thet e on account of Eqs(Al) and (A2). The temperature
largest length scales and for times> 1/702f(2’||°WS again - fiyctuation 5T(k,t) in Eq. (Al) simply decays as a kinetic
from Eq. (31) as §y(k,t)=(To/p)exp(-2yogk™n). This im-  node and the average temperature stays spatially homoge-
plies that the heat mode on the largest spatial and temporgkous. Clearly, the assumption is too drastic a simplification
scales is a purely diffusive mode with a diffusivigpé?. It to describe the density and temperature fluctuations. How-
is much larger than the diffusivity,&> for the vorticity  ever, an approximate theory based on vorticity fluctuations
(see Fig. 4, and the associated length scale grows likealone is justified to describe the correlations in the flow field,
Li(t)~27&V2yo7. Inspection of the eigenmodes as discussed in Sec. IVA.
{Wy(k),v4(K)} in Egs.(A8) of Appendix A fork—0 shows So, we combine the assumption of incompressibility,
that this diffusive mode is a purely longitudinal velocity field Si(k.t)=0, with S, (k,t) in Eq. (29), using Egs.(24) and
Ti(k, 7). Its diffusivity 7’o§ﬁ, defined in Eq.(A4), depends (25). Tr_n_s enables us, for thermodynamma}lly large systems,
for small inelasticities ¥,—0) mainly on thermodynamic to expllcmy c_alculate_ the correlat|_on funcﬂo@aﬁ_(r,t)_ of
variables, like compressibility and pressure, and only slightl)}he velocity field, by inverse Fourier transformation, i.e.,
on transport coefficients.

The physical implications of Fig. 6 are quite interesting. It
shows the phenomenon ofoise reduction[17] at small

Gop(1 =11 5G] (1) + (8= T 4T )G (1,1)

L Lo . k I
wavelengths. With increasing time the fluctuatioggk,t) :f dexp(ik-r)(5aﬁ—kak[,)sj(k,t).
ands, (k,t) in the flow fielddecreaseat largerk values and (2m)
remain for allk bounded by their initial equipartition value (32)

To/p, which is independent df. This can be rephrased by

Stating that the flow field exhibits Only a ‘“relative” instabil- The Fourier transform has been calculated in Appendix B’

ity. The noise reduction is a direct consequence of the mizq yields for the two scalar function; (r,t) with X
croscopic inelastic collision dynamics, which forces the par-—y 1}

ticles to align more and more in successive collisions. It is
this “physical coarse graining” process that selectively sup-

. > . T(t) r
presses the shorter-wavelength fluctuations in the flow field G, (r,t)=——=0g\| =277/, (33
in an ever-increasing range of wavelengths. Consistent with f &
this picture is also the selective suppression of the diver-
gence of the flow fieldu(k,t), which decays at a much whereg,(x,s) is given in Eqs(B11) of Appendix B. Both
faster rateyogsz than its rotational pam, (k,t) that decays functions are not independent, kgt can be calculated from
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fined in Fig. 3 that separates the linear regime from the
nonlinear clustering regime. The minimum @, (r,t) at
L,(t) can be identified as the mean diameter of vortices,
shown in Fig. 1. The analytic result f&, (r,t) in Eq. (34)

for large times shows that that,(t) ~27¢&, V2y,7 is grow-

ing through vorticity diffusion.

Apart from the restrictions to hydrodynamic space and
time scales, there are two essential criteria limiting the va-
lidity of the incompressible theoryi) system size4 must
m be thermodynamically large(L>27¢,), so that Fourier
sums overk space can be replaced lbyintegrals.(ii) In
principle, times must be restricted to ttieear hydrody-

: namic regime ¢=r.), so that the system remains close to

0 50 100 the HCS. In fact, the simulations show that our description of
ro the fluctuations in terms of a Langevin equation based on

incompressibility is correct over a time range much larger

FIG. 8. Comparison of theoretical predictiof®4), based on thant.. This is understandable because velocity correlations
incompressibility, with MD simulation results fas (filled circles do not grow in amplitude(peneplanation and are only
andG, (open circleg in unitsTo/m, versusr/o. Parameter values weakly coupled to the exponentially growing density fluctua-

0.001

are $=0.4, «=0.9, and7=40. tions.

g) using Eq.(B7). This is a well-known relation in the theory C. Correlations in compressible flows

of homogeneous and isotropic turbulence in incompressible _ ) .

flows (see Refs[33] and[19], Chap. 3. In this section we extend the theory to compressible flows

As an explicit example we show the result for inelastic[2]- The description of the velocity fluctuatio®,(r,t) in
hard disks in Fig. 8, which is most relevant for a comparisor>€¢: VB was based on fluctuating hydrodynamics for the

with existing computer simulations. Their analytic form is Vorticity fluctuations only, i.e., the absence of longitudinal
fluctuations(incompressibility assumptionFigure &b) con-

1 s L, firms that this assumption is very reasonable indeed for

gj(x,8)= 2f ds’es X4’ (34 nearly elastic fluids, as (k,t)=S(k,t)=T/p is vanish-
2mx*J0 ingly small down to very smalk values. However, for the

smallest wave numbers, the incompressibility assumption

breaks down. As the analysis of Eq29) and(31), as well

as the numerical evaluation in Fig. 6 show, the structure

factorsS(k,t) andS, (k,t) become equal as—0. This im-

plies for large distanceS ,4(r,t)~S, (k—0t) 6,49(r), and

thus the absence of algebraic long-range correlations on the

largest scalesr@2w§)). Therefore, we can already con-

clude that the asymptotic behavior Gf, (r,t) and G(r,t)

and g, =4(rgy)/ar. The functiong, (x,s) has a negative
minimum, whileg(x,s) is positive for allx,s,d; there are
algebraictails g(x,s) ~ — (d— 1)g, (x,s)~Cx 9 with a co-
efficientC and a correction term aP[ exp(—x4/4s)], explic-
itly given in Eg. (B12). These functions have structure on
hydrodynamic space and time scales where ketin/&, and
s=2vyy7 can be either large or small with respect to unity. At

small inelasticit 0) the dynamic correlation len . ) )
Y ¢0—0) y gth cannot ber ~9. Instead ther ¢ tail, obtained in Sec. IV B,

and mean free path, are well separated. . . . . o .
Long-range spatial correlations in systems with Short_descrlbes intermediate behavior which is exponentially cut

range interactions are a generic feature of nonequilibriun?ff @t @ distance determined by the width 8f (k,1). This
steady state$NESS (see the reviews on driven diffusive Width can be estimated from the eigenvalues of the hydrody-
systemg 8] or systems with imposed temperature gradients'@M¢ matrix, more precisely from the dispersion rflat'on of
[34]). Two remarks are in order here. Firstly, the presence othe heat mode, which is a purely longitudinal veloaifyfor
long-range spatial correlations, as found in granular fluidsk— 0. To second order ik its dispersion relation is given by
shows that these typical results for NESS carry over ta/n(k)=yo(1—k?&f). Note that for small inelasticities and
classes of adiabatically changing states, such as here the h§)- are well separatetsee Fig. 4, as §~ 1/yo, whereast,
mogeneous cooling state where the temperature changesé ~ &1~ 1/\/yo.

adiabatically. Secondly, an essential feature for the existence Using the analytic approximatio(81) for S(k,t), valid

of long spatial tails in NESS is a breaking of the isotropicfor smallk and larger, the structure factoB;B(k,t) can be
spatial symmetry34]. In incompressible flows this symme- written as

try is broken by settingy,(k,t)=0, and keeping only the
transverse velocity field.

A more systematic comparison between the theoretical
predictions(34) and molecular dynamics simulations is made
in Refs.[1,4]. In Fig. 8 we show the results from a single + (8,5 koK) exp(—s'k2E2)], (35)
simulation run at packing fractiop=0.4, and small inelas-
ticity «=0.9. The parallel parG(r,t) exhibits a tail~r 9 where s=2vy,7. If the system is thermodynamically large
[see Fig. 2a) in Ref.[1]] and shows good agreement up to (L>27§)), GH+(r,t) and G (r,t) can be obtained by per-
7= 100, which is well beyond the crossover timg=67 (de-  forming integrals ovek space and yield expressions in terms

T(t) s 1AS'TD O ’
Sap(k )= Tfod s'e® [kokgexp —s kzgf)
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FIG. 9. (& gj(x,s) and(b) g, (x,s) versusx=x, =r/¢, fors
=2yy7=2. The solid lines correspond to E(4) in the incom-

pressible limit €, /£, —o), and the dashed lines to approximations

(36), for §/¢,=1,2,5,10. As§| /¢, decreases, the 2 tail in (a) is

. . . . G
cut off exponentially at smaller distances and finally disappears al
& =&, . The depth of the minimum itb) decreases with decreasing

& /¢, and finally disappears #@=¢, .

o —d
of integrals over simple functions, as derived in Appendix B.Where the algebraic tait-r

Here we only quote the analytic approximation tb2:

T(1)
p
o S ’
Azf ds’es
2mwr<Jo

4s'
for A=(||,L), wherex,=r/&,, oy=1, ando, =—1. We
first observe that, in the time regime-1/y,, G, (r,t) has
structure both on the scale~2#w¢, as well as onr

~2m§|. Moreover,GH*(r,t) is positive both in the incom-
pressible as well as in the compressible case becduse

1
4mel

Gy (rt)y~

s exp(s' —x2/4s")
f ds’

0
exp( -

S/

x{ )
+ —_—
4s’

(36)
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FIG. 10. Perpendicular velocity correlati@® , in unitsT, ver-
susr/o for packing fractiong= 0.4, relatively high inelasticityx
=0.6 and7=40. Simulation results are compared with prediction
(34) of the incompressible theorfglashed ling and the numerical

solution (solid line) of the full set of fluctuating hydrodynamic
equations.

100

ferent values of the ratig; /¢, , together with the result” 9
for the incompressible limit of Sec. IV B, which is obtained
for §—co. At finite y,, Eq.(36) describes exponentially de-
caying functions at distancesz 27§, . Moreover, upon in-
creasing the inelasticity the minimum @, (r,t) becomes
less deep and vanishes &t §, , and the modifications of
the compressible theory become lafgee Fig. 10
The predicted spatial velocity correlatio@(r,t) and
G, (r,t) have been obtained by performing inverse Bessel
transformations on the numerical results f§f(k,t) and
S, (k,t). At small inelasticity @=0.9) the functionss(r,t)
and G, (r,t), calculated from the full set of hydrodynamic
equations, differ for <2x§ only slightly from the results
for incompressible flow fieldgsee the discussion in Sec.
IVB). However, the algebraic tails-r 9 in Gy(r,t) and
C L (r,t) forr=2x¢, , as derived in Sec. IV B, are exponen-
ially cut off for r=2=¢), as implied by Eq(36). As the
correlation lengthst, ~1/\/y, and &~ Ly, are well sepa-
rated for smally,, there is an intermediate rangerofalues
in Gy(r,t) can be observed.
At higher inelasticity§ and &, are not well separated
and, as a consequence, there doetexist a spatial regime
in which the longitudinal fluctuations in the flow field can be
neglected and the regime of validity of the incompressible
theory has shrunk to zero. Figure 10 compares results from
incompressible and compressible fluctuating hydrodynamics
[the solid line indicates numerical solution; the dashed indi-
cates the for analytic approximatigi86)] with simulation
data forG, (r,t) at $=0.4 anda=0.6, and confirms the
necessity of including longitudinal velocity fluctuations to
calculate the spatial velocity correlations at reasonably large
inelasticities. The agreement between compressible theory
and MD simulations is very good, even at large inelasticities.

V. INSTABILITIES AND DENSITY CLUSTERS
A. Structure factors

So far, we have seen that the velocity structure factor,

<¢. In Fig. 9 we show the above approximations for dif- S, (k,t) andS;(k,t), develops a peak by “selective suppres-
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sion” of its largek components, where the top of the peakwith coefficients defined in Eq$A3)—(A5).

remains at its initial valug‘peneplanation” in structural Equations(37) and (38) for S,, give a fair analytic ap-
geology. Next we will focus on the unstable structure factor proximation of the “numerical” solutior{solid line in Fig.

Shn(k,t), which describes the density clustering in undriven5(a)] for y,7=2. The “dissipative” approximation
IHS fluids. A real space analog of this phenomenon of strucs{?/*9(k, 7) [dashed-dotted line in Fig.(8] applies forko

ture formation corresponds to “uplifting” in geological ter- <0.12(kl,<0.9y,), and has a maximum foy,7>1. The

minology, with the Alps as a typical example. In the compa-“elastic” approximation S{¢’(k,7) applies for ko=k o
rable case of spinodal decomposition the phase separation 1—50.16(klo~1.170), and its value ak=k}, is for r=40

driven by a single unstable mode, the composition fluctua- 1.9/y, and 7= 80, respectively, 75% and 92% of the cor-
tions, described by the macroscopic diffusion equationegponding numerical value.

aion(k,t)=zp(k) on(k,t), where the growth rate has the |t js instructive to compare the abovevalues for Fig.
typical form zp(k)=Ak*(1-3£3k%). The corresponding  5(a) with the dispersion relation, (k) in Fig. 3 for the heat
structure factor(22) in the noiseless Cahn-Hilliard theory mode which refers to the same density and inelasticity. For
would have the forn,(k,t) ~exp2z,(K)t], and exhibits a  \ave numbers below the stability threshold{(k,) the den-
maximum growth rate akpg,—1/6p, wherezp(k) has a ity flyctuations grow, and fde>k? the density fluctuations

maximum. This time-independent length scale fails to de_’remain at the thermal noise level. Furthermore, numerical

scribe the growing I_ength scales of the patterns observed i tions of the theory witlsolid lines in Fig. %a)] and
spinodal decompositiofb]. without noise[dashed lines in Fig.(®)] agree in the dissi-

For_ the granular f_Iu_id we first consider a naive version Ofpative range as well, but disagree foabove the threshold
the noiselesCahn-Hilliard theory, proposed by Deltour and |«

Barrat[15]. These authors assume that the structure factor"
S,n can be described by the unstable density field, i.e.
S,n(k, 1) =S, (k,0)exg 24(K) 7], with the growth rately (k)

of the unstable heat mode. A% (k) decreases monotoni-
cally with k, as shown in Fig. 3, this structure factor shows
the fastest growth at themallestwave numberk,;,=27/L
allowed in a box of length., and does not explain the dy-
namics of cluster growth.

Next we consider the full theory of Sec. Ill A with Lange-
vin noise included. The rescaled structure faggy(k,t) in
Eg. (20) contains exponentially growing terms, &R
+¢,) 7] provided¢, + £, >0. Inspection of the dispersion re-

The analytical resul(37) demonstrates that the instability
is driven through a coupling to the unstable “heat” mode,
which is, in the smalk range, a longitudinal velocity mode.
The coupling of the density fluctuation to the unstable heat
mode is rather weakBHH~O(k?), which explains why
structure in the flow field appears long before density clus-
ters appear.

The wave numbek,,,,(t) of the maximum growth o8,
in Eq. (37) determines the typical length scale of the density
clusters. For Z,7m>1, it can be determined analytically as
Lei(t) ~ 27/ Kmalt) =272 yo7, Which is the same length

> R scaleL(t), as appeared i§,. The good agreement between
lations in Fig. 3 shows a fast growth rat¢,2for k below the theory and MD simulations, shown in Fig. 5, confirms that

stability thresholcki;, and a much_ slower growth rate( theinitial growth of density inhomogeneities is indeed con-
; égt)e’dl?jrs thi“lha'f of the previous one, that can be neygjieq by the longitudinal flow field with a length scale
YoT> L. . . Lg(t)~ /7y, at small inelasticityy,, andnot by the trans-

So_far the arguments are as in S_ec. I_\/ C. The b|g dn‘fer-verse flow field with a length scale,(t)~2m&, \2yor

ence is that the size of the fluctuations in the flow field are .

) . o : ~ /7, independent ofy,.

given by S, (k) =vg(t)S, (k,7) with a=(L,[), where The pattern selection mechanism for the vortex structures

v5(t) decreases faster thaBl increases, and there is no is very different from the mechanism that leads to the for-

growth whatsoever. However, the exponential growth in themation of density clusters. The latter one is the more com-

density fluctuationss;(k,t)=n?3" (k,7) is not suppressed Mmon linear instability in density or composition fluctuations,

by the rescaling factan?. Thus the dominant growth rate in Which also occurs in spinodal decompositiGi); the former

Eq. (20) for yor>1 is one is analogous to peneplanation, as discussed in Sec. IV A.
Finally we consider the temperature fluctuatis(k, 7)

and the crosscorrelatios,r(k, ) in Figs. 7a) and b). The

most dominant contribution to Eq420) comes again from

two heat modes, and one readily finds that jgr=>1,

e2n(7_ 1

Sun(k ) = — +nZBH (k) 37)

2c2 2040

whereZy, is given in Eq.(4) andn/2c? is the plateau value.
We calculate the coefficier!"'(k) in Eq. (21) both for the

dissipative and elastic ranges. The eigenmddas(k), Wy with a time-independent coefficieR(k),
(-k)t} in Egq. (A8 and the relaton B}

= [Wyin /Wiy | 2B in combination with Eq(30) yield then Ror(k)=(b—a)/2 (klg<yo)=—4cf/db (klo~ \/7—(0)(’))
4
Bin(k)=KA43/ny,  (Klg<yo) with coefficients defined in Eq(A5). Similarly one finds
Yodb? [d Rir= RﬁT. This explains qualitatively why the excess struc-

= M(Zab_cg) (Klo~ o), (38 gjnre factorsS;; and S'; have roughly the same shape as
s n-

S1o(k, ) =Rap(K) Sk, 7) (39)
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On the other hand, the structure factc~$$T(0,r) and

S,1(0,7) atk=0 can be calculated directly from Ed8) and
(A2), and yield

SR PR
(41)
én (0t)= a—z(l—e*m")z_{_ 36727’0"
e 2n dn .

This result explains the variation of both structure factors
aroundk=0 as shown in Figs. (@ and 7b). There exist
nonuniformities in the K,7) behavior. The limitsk—0 at
fixed 7, and the limit —0 at fixed k, cannot be inter-
changed.

B. Spatial correlations

To obtain predictions for the density-density correlations

Gpn(r,t), we have to calculatd-dimensional Fourier inver-
sions of S,,(k,t), or ratherS; (k,t), as discussed around
Egs. (26) and (27). As it is a scalar function ok=|k|, its
inverse can be reduced to a one-dimensional Bessel tran
form, as shown in Appendix B in the transition from Egs.
(B2) to (B5).

The Bessel transforms of the numerical dataSgy(k,t),

obtained in Sec. IlID, have been carried out numerically

USINgMATHEMATICA , and are shown in Fig. 14), and simi-
lar results forG,+(r,t) are in Fig. 11b). The spatial density
correlation G,,,(r,t), obtained numerically fron,,(k,t),

exhibits a negative correlation centered around a distance -1.0

which for large times grows agr.
Unlike the case of velocity correlations in E1), no
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analytic approximation is available that covers both the

small- and largée behavior ofS,,(k,t) correctly. However,
the behavior(37) for klg~\/yo (o smal) and kly<y, is
expected to describe correctly the large distance behavior
Gnn(r,t) in the ranger~2lo/\yo and r=27ly/y,, re-
spectively. The inverse Fourier transforms of both expres
sions in Eqs(37) and(38) can easily be calculated and yield
for the dissipative ranger &2ly/vy),

1 15 r
—G>(r,t):—g>(—,2y T), (42)
n2 " 2yonéf 27 g
and for the elastic range €27l o/\/yo),
1 HH r
=G (r )= —" <(—,2 ) 43
n2 (1) 2’)’0§agn n YoT (43

All factors on the right-hand side are dimensionless quanti
ties, and the functiong(x,s) are given by
s’ —x2/4s'

2
S—X“/4s s
!

H(X,5)=— +f A —
gn (X, o (4ms)¥2

(4773) d/2
(44)

S ! ’
gn<(x,s)=f ds’efos’ ~¥°14' [( 475792
0

FIG. 11. Spatial correlation function® G,,(r,t), in units
10 3/¢*, and(b) G, +(r,t)/T(t), in units 10 3/¢2, versusr/o ob-

(ﬁﬂned numerically from the structure factors shown in Fig. 7 at the

same parameters as used in Fig. 5. Both functions show a growing
correlation length.

We recall from Eqgs(A3) and (A4) that £~ 1/y, and &y
~&r~ 1/\/3/—0, so that the behavior in Eq$42) and (43) is
indeed on the expected scales. The functigndoes have
the same qualitative shape as Fig(éd1The location of the
minima also increases for large times as but the minima
of g~ (x,s) are too shallow and too far to the right to give
quantitative agreement with the asymptotic re$dR). The
behavior predicted by (x,s) is strictly positive, and de-
scribes the curves in Fig. (@ for r to the right of the zero
crossing, where ~ &, .

Comparison with simulation results confirms that the
present theory correctly predicts the buildup of density cor-
relations in the time regime<r.. For a more comprehen-
sive comparison of the density correlation functions with
MD simulations at different densities and different inelastici-
ties, we refer to Refl4], where also the range of validity of
the present theories is investigated.

In summary, the typical length scales of vortideg(t)
~+/7 and of density clusterk(t)~+/7/yq, also correspond
to the typical length scales on which the equal-time correla-
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tion functionsG, (r,t),G(r,t), and G,u(r,t) show struc- Sections IV C and V B deal with spatial correlations. The
ture, which extend far beyond the microscopic and kineticassumption of incompressible flow for nearly elastic hard
scales. spheres ¢=0.9) leads to spatial velocity correlations, in-
cluding algebraia ~¢ tails, that are correct up to large dis-
VI. CONCLUSION tances (<=2w¢)). We have verified by MD simulations and

) numerical calculations that amall inelasticitiesa‘*(k,t) es-

In this paper the structure facto§,,(k,t) and corre-  sentially vanishes for all wave numbers except at very small-
sponding spatial correlation functiorS,(r,t) have been  values k=<1/¢), where the assumption of incompressible
calculated and compared with two-dimensioridD) mo-  y fjuctuations, made in Sec. IVA, breaks down. Conse-
lecular dynamics simulations for weakly inelastic hard diskqyently, at small inelasticities the most important qualitative
systems, Wh?r%:(l_“z)/z_d is small, using the hydrody-  mqdjfication thatS adds to the spatial correlation function
namic equations of an elastic fluid, supplied with an energ;@ll(r,t) i to provide an exponential cutoff for thie 9 tail at

sink representing the collisional dissipation. Also, we havey largest scales=2m¢|. At larger inelasticities the non-

as_sume_d that th_e homo_g_en_eous cooling_ stbl_ €S is an vanishing contributions fronﬂ‘*(k,t) modify G(r,t) and
adiabatically cooling equilibrium state, which is only correctG (r.t) significantly at all distances
1A\ .

to lowest order inyy. o
. . . The good quantitative agreement between theory and
The basic theory is developed in Secs. lllA, 1IIB, and computer simulations shows that our theory for structure fac-

[11C, modeled on the Cahn-Hilliard theory for spinodal de- ors,S, (k.t) andS,,(k.t), and spatial correlation functions,

composition. To understand the physical excitations tha&aﬁ(r,t) andG, (r.t), is correct for wave number, position.

drive the instabilities, we have presented a theoretical analyénd time dependence in the relevant hydrodynamic range

sis of the structure factors using a spectral analysis of th . - _
unstable Fourier modes. This is done in Sec. IV for structure?md for inelasticities ¢=0.6) that are not too large.

factors and spatial correlations in the flow field, and in Sec.

V for the density and temperature fields. The analysis gives a ACKNOWLEDGMENTS
simple analytic description, valid foy7>1, as given in
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break down with increasing time, because the density fluc-
tuations are predicted to grow at an exponential rate. This is _
indeed seen to happen as the timapproaches the crossover APPENDIX A: TRANSPORT COEFFICIENTS

time 7. to the nonlinear clustering regime, as defined in the | inearization of the hydrodynamic equatiot® around
caption of Fig. 2. The agreement with MD simulations for the HCS results in the following set of equations:
7<7. IS again good. Moreover, the simple analytic approxi-

mation (37), based on the dynamics of the unstable heat 9.dn=—nV -u,
mode and valid fory,7=2, shows that the whole peak in
San(k,t) lies in thek range below the stability threshold for 1
the heat mode K<k;), and that the fluctuations witk du=——Vp+vV2u+(y,—v)VV.-u, (A1)
>k}, are essentially at thermal noise level. p

The density structure factd®,,(k,t) shows that spatial
density fluctuations in undriven IHS fluids are unstable, and 98T= Z_KV25T_ 2_pV'u_ oT
lead to the formation of density clusters. The linear instabil- ! dn dn '
ity is driven by longitudinal velocity fluctuations and de-
scribed by a coupling coefficient @(k?) in Egs.(37) and  The pressurg is assumed to be that of elastic hard spheres
(39) for S,,. The fluctuations in the flow field are onfgla-  (EHS), p=nT(1+ Qgxno?/2d), where Qq=27%%/T(d/2)
tively unstable, and do not lead to exponential growth of thds thed-dimensional solid angle, ang(n) is the equilibrium
corresponding structure factors. Nevertheless, the dissipatiwalue of the pair correlation function of EHS of diameter
IHS fluid develops structure on intermediate scales with typi-at contact. In three dimensions the Carnahan-Starling ap-
cal length scalek (t)~ &\yo7~ 7/ o for the mean clus-  proximation givesy= (2— ¢)/2(1— ¢)3 [35], in two dimen-
ter sizes, and.,(t)~¢&, \/13‘/07-~\/7- for the mean vortex di- sions the Verlet-Levesque approximation gives=(1
ameters. —7¢116)/(1— ¢)? [36].
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The transport coefficient, v, and« for hard disks and  complex conjugate pair. So we choogg(k)= ¢\ (—k)
hard spheres are given by the Enskog theory for elastie= ¢, (k). The corresponding eigenvectors Mf(—k) in the
sphereq28], andpv=7 and p»=27(1—1/d)+{ are ex- case of propagating sound modes are obtained from the
pressed in shear and bulk viscosityand £, respectively.  transformation {w, (—k),v_(—Kk)}—{w_(k),v,(k)}. All
The collision frequency in the Enskog theory i®  other eigenvectors, corresponding to nonpropagating modes,
=Qqxno% vy/\27 where the thermal velocityvy  are invariant under the transformatikn- — k.
=42T/m, and temperature is measured in units of Boltz- Inspection of Eq(A2) gives for the shear modes (k)

mann’s constankg . =yo(1—k?¢%) and w, (k)=v, (k)=u, (k). This mode is
Carrying out the linearization and rescaling describednstaple, i.e., has a positive growth rate(k) for k below
above Eq(3) yields the hydrodynamic matrix the stability thresholk* = 1/£, ~ yo/lo.
0 0 —ikl 0 The eigenvalues of the remaining<® matrix are the
roots of a cubic equation. They are determined numerically
~ Y02 Bk)  —ibklp 0 and shown in Fig. 3. The characteristic properties of the
M (k)= - d spectrum and eigenmodes are discussed in the body of the
—ictkly — 710Klo o1(k) 0 paper after Eq(3). The more technical aspects needed in the
calculations are summarized below.
0 0 0 0, (k) There is a second unstable mode, the heat mode &ith
(A2) >0 for k<k? . This stability threshold is the root (k)

with transport coefficient and correlation lengif)s =0 or equivalently of dgM (k)| =0, and yields simply

dab 1/2
——1) . (A7)

8, = yo= vk 0= yo(1-K?&D), kx =t
4c?

=

8=y~ nk? w=yo(1-K*&), (A3)
5 B 5.2 The three remaining eigenvalues and eigenvectors can be
B=—vo—2kk/dnw=— yo(1+kE7). calculated perturbatively. In theissipativerange klo<<7yq)
this is done by an expansion in powerskofind yields after
lengthy but straightforward calculations, the eigenvalue
= yo(l—kzgf) [see Eq(4)], and the corresponding left and
right eigenvectors, where components are labeledgg k),

ikl ikl
WH(k):<_W’2_yo(a_b)’l)’

Moreover, we need the correlation lengths= &+(ct/cy)
and f” , With

(A4)

2 1
ci+ gdb(b—a)

&=&+lo/y9)?

to be derived below. Note that aff,~1/\y, except

~1/y,, Which is much larger. _ _ (A8)
The thermodynamic quantities are _( ik [d 2) ikdb )
vy(k)=\——|gab—ct|,——%—,
Y8 8
dy ) vi 1 (ap
a=2 1+;ﬁ it e with normalization (vy|wy)=1+0O(k?). The “sound”
Vo T modes are stable for all wavelengths, and nonpropagating in
5 (AS)  thisk range. Inspection of Fig. 3 shows that the mode=(
b= 2_p CQZE:C2+ gbz +) decays diffusively {,<—k?), whereas the modenE&
dnT" 7 Vi T 47 —) decays rapidly { o« — y,). The explicit forms off, and

{_ are not needed here. They can be found3i]. The
wherev, andvg are, respectively, the isothermal and adia-corresponding eigenmodes are only needed to lowest nonva-

batic speed of sound for EHS fluids. nishing order ink and read
The eigenvalues of the asymmetric matki(k) are de-
noted by £,(k) and its right and left eigenvectors by w,(k)=(1,-a,0, w_=(0,1,0),
w, (k),v, (k) respectively. Herex==* labels the sound (A9)
modes\ =H the heat mode, and=_1 labels d—1) degen- v,.(k)=(1,0,0, v_=(a,1,0).

erate shear or transverse velocity modes. The eigenvectors
form a complete biorthonormal basis, which satisfies In the dissipative range, &0, the heat modéA8) is a
(W|w,)=6,,, and allows a spectral decomposition of purely longitudinal velocity fluctuation, while the sound
M(k) in the form modes(A9) are a mixture of density and temperature fluc-
tuations. To first order ik, density and temperature fluctua-
B tions couple to the heat mode, and longitudinal velocity fluc-
M(k)_; ENCOTSUCALYE (A8)  tuations couple to the sound modes.
For larger wave numbersk(y~ \/y—o) the conventional
Moreover, the eigenvalue equation, [dgk)l —M(k)]=0, character of the sound and the heat modes is recovered. Here
is an evenfunction of k. ConsequentlyM (k) and M (—Kk) we solve the eigenvalue problem by settkig \/y,q, taking
have the same eigenvalues, which are either real or form @= (1), anddetermine the eigenvalues and eigenvectors to
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dominant order ag,—0 (nearly elastic cage The eigen- m s _
value for the heat mode in thastic rangeis then - f dé(sing)"" < exp(ikr cos6)

dk
—expik-r)=
Ln(K) =0l (K2 =KD =70(Lo—K*ER),  (AL0) J Qg
as listed in Eq(4), andwy,£3 =D+ is the heat diffusivity of

the elastic hard sphere fluid. The corresponding eigenvectors i2-1
are P Poneing &9 =(E) P(di2)Jaz1(kr), (B4

fwd 6(sing)42
0

where the integral representatio8.411.7 of Ref. [38] has
been used for the Bessel functidn(z). Then Egs.(B2)
(All) become

1/(d
Wiy (k)= — Zb,—c%,—dbgH(k)Mik ,
S

1
(k)= C—S(b,—1,[370—b§H(k)]/ikC$)-

_ 12 +
Gpp( b= Wf dk K Jarp—1(kr) S/ (k,t),
In the elastic limit ¢(/,—0) the componentsvy ~vy, (B5)
~ /7o are vanishing, and the surviving terms in E411) de1 (=
give the heat mode for the elastic fluid. Gy (r,H)= —d/J dk K2713,,5(kr) S/ (k,t).
For the sound mode\(= o= *) in the elastick range we (27r)=Jo
h imilarlyZ ;= —iocklo— O(k?), and the ei t ' . .
a?evfhf)?el z:c ¥£g elasl,t?cc?lui% (k). and the eigenvectors With the help of the recursion formula for Bessel functions,
’ zdJ,(2)/d z+vJ,(z)=2J,_1(2), together with the general
1 relation
Wl)’(k): _(11b10-CS)1
Cs G/ (r,t)=[G./(r,)—G/ (r,H]/(d—1),  (B6)
v.(k)= 21 (CT,d o (rcs). we obtainG ' (r,t) from G (r,t), i.e.,
S

G (r,t)= GH (r, t)+(

APPENDIX B: FOURIER TRANSFORMS
To calculate the tensor velocity correlation functionin the general cas&(k,t) is nonvanishing and we have

G,4(r,t) by Fourier inversion frong,4(k,t), we start from .6 Eq.(24) an additional part, denoted @aﬁ(r t), com-
Egs. (24)—(27), and consider first thincompressibldimit

whereS(k,))=0, i.e ing from k kzS;(k,t). Here we have the relations
_ dk . [1=(k-1)2]S] (k1)
e R R N k G+(r t):f deIkAr[ ( ]S‘ '
de (‘Sa,B_ a B)SL( :t) (Bl) (2’77) d-1
(B8)
Accordlng to Eq.(25) .Gaﬁ can be split into tyvo scalar func- G+ (r )= e‘k'rﬁf(k’t%
tions,G| andG, , which will be expressed i§, . The sim- pp d
plest functions to calculate are the trace and parallel part of
G, i€, The results for these functions can be read off directly from
Eqg. (B2) and (B5). In this case the parallel part is obtained
(r t) G (r,t) dk . from Eqg. (B8) as
Pp 2 ( _j delk»rsr(k't), q ( )
‘ (2m) G (=G y(r,)—(d—1)G/(r,)=G, (r.1)
(BZ) H ’ pp\' 1 ’ 1 ’
Gy (r,t)=r G (1t J—
| (TD=Tal gGap(r.t) +1=GI(r,D). (B9Y)

_ dk_ kr L.\t
_f (zw)de [1=(k-n)TISI (k). Fourier inversion of any of thecalar functionsS,,(k,t)
with a,b={n,T} is covered by the first line of Eq&§B2) and
To carry out thed-dimensional angular integrations for  (B5). We consider firstGy and G, in the incompressible
=2 we express the infinitesimal solid angle as limit, whereS, (k,t) is given by Eq.(29).
Inspection of EqQ.(29) shows that the largk-Ilimit of
dk=(sin ;)97 2. - (sinfy_,)d6;- - -dfy_-de, (B3) S, (kt)isS =T(t)/p, leavingS/ (k,t) as a remainder. This
may be written as

where 6, (0,7r) are polar angles ang e (0,2) is an azi-
muthal angle, and we note that the full solid angleQig

T(t) [2vor
A S/ (kt :—j ds'exg(1-k?£%)s']. (B10
=[dk=2#7%YT"(d/2). Then we use the relation L (k) p Jo H( ¢)s']. (B1O)
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Using Eq.(B5) for the parallel velocity correlation function
G| (r,t) and Eq.(B7) to determineG/(r,t), we obtain
Gy () =[T(t)/p&l1gr(x,5) for N={], L} with s=2y,7
andx=r/¢, , which is valid in dimensiong=2. Moreover,
0,(x,s) is given by

es’—x2/45’ gH(X,S)
(47Tsl)d/2_ d—1

fs o [d NG
ds'e =,—.
0 712 4s’

S
QL(X,S)=J ds’
0

i1 (B11)
S = iz
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The Bessel transform E@B5) of exp(—pgk?) in Eq. (B10)
has been calculated using E§.631.5 of Ref. [38], where
y(a,2)=[§dtexpt)t“ ! is the incomplete gamma func-
tion. Ford=2 it reduces toy(1,z)=1—exp(—2) and ford
=3 to y(3/27) = 7w $(\2)I2— zexp(~2), where ¢(2) is
the error function. We observe thgii(x,s) is positivefor all
x,s. For large distances?>4s, the functionsg, (x,s) show
algebraic tails~1/x%. This can be seen by noting that
y(a,x?14s) approache$ («), so thatgj=—(d—-1)g, and

gi(xs) (X, .8)~ 1
d_l - gl 1y ded

)[eS— 1]. (B12
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